IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v29y2012i2p144-169.html
   My bibliography  Save this article

Dealing with Distances and Transformations for Fuzzy C-Means Clustering of Compositional Data

Author

Listed:
  • Javier Palarea-Albaladejo
  • Josep Martín-Fernández
  • Jesús Soto

Abstract

No abstract is available for this item.

Suggested Citation

  • Javier Palarea-Albaladejo & Josep Martín-Fernández & Jesús Soto, 2012. "Dealing with Distances and Transformations for Fuzzy C-Means Clustering of Compositional Data," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 144-169, July.
  • Handle: RePEc:spr:jclass:v:29:y:2012:i:2:p:144-169
    DOI: 10.1007/s00357-012-9105-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-012-9105-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-012-9105-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Huiwen & Liu, Qiang & Mok, Henry M.K. & Fu, Linghui & Tse, Wai Man, 2007. "A hyperspherical transformation forecasting model for compositional data," European Journal of Operational Research, Elsevier, vol. 179(2), pages 459-468, June.
    2. Wayne DeSarbo & Venkatram Ramaswamy & Peter Lenk, 1993. "A latent class procedure for the structural analysis of two-way compositional data," Journal of Classification, Springer;The Classification Society, vol. 10(2), pages 159-193, December.
    3. Berget, Ingunn & Mevik, Bjorn-Helge & Naes, Tormod, 2008. "New modifications and applications of fuzzy C-means methodology," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2403-2418, January.
    4. John Aitchison & Michael Greenacre, 2002. "Biplots of compositional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 375-392, October.
    5. Doring, Christian & Lesot, Marie-Jeanne & Kruse, Rudolf, 2006. "Data analysis with fuzzy clustering methods," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 192-214, November.
    6. Michael Greenacre, 1988. "Clustering the rows and columns of a contingency table," Journal of Classification, Springer;The Classification Society, vol. 5(1), pages 39-51, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yameng Wang & Apurbo Sarkar & Linyan Ma & Qian Wu & Feng Wei, 2021. "Measurement of Investment Potential and Spatial Distribution of Arable Land among Countries within the “Belt and Road Initiative”," Agriculture, MDPI, vol. 11(9), pages 1-23, September.
    2. Tsagris, Michail & Preston, Simon & T.A. Wood, Andrew, 2016. "Improved classi cation for compositional data using the $\alpha$-transformation," MPRA Paper 67657, University Library of Munich, Germany.
    3. Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
    4. Michail Tsagris & Simon Preston & Andrew T. A. Wood, 2016. "Improved Classification for Compositional Data Using the α-transformation," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 243-261, July.
    5. J. A. Martín-Fernández, 2019. "Comments on: Compositional data: the sample space and its structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 653-657, September.
    6. Morais, Joanna & Simioni, Michel & Thomas-Agnan, Christine, 2016. "A tour of regression models for explaining shares," TSE Working Papers 16-742, Toulouse School of Economics (TSE).
    7. Karel Hron & Paula Brito & Peter Filzmoser, 2017. "Exploratory data analysis for interval compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 223-241, June.
    8. Jan Skála & Radim Vácha & Pavel Čupr, 2018. "Which Compounds Contribute Most to Elevated Soil Pollution and the Corresponding Health Risks in Floodplains in the Headwater Areas of the Central European Watershed?," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    9. Xiaona Na & Yangyang Chen & Xiaochuan Ma & Dongping Wang & Haojie Wang & Yang Song & Yumeng Hua & Peiyu Wang & Aiping Liu, 2021. "Relations of Lifestyle Behavior Clusters to Dyslipidemia in China: A Compositional Data Analysis," IJERPH, MDPI, vol. 18(15), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiwen Wang & Liying Shangguan & Rong Guan & Lynne Billard, 2015. "Principal component analysis for compositional data vectors," Computational Statistics, Springer, vol. 30(4), pages 1079-1096, December.
    2. Antoine, V. & Quost, B. & Masson, M.-H. & Denœux, T., 2012. "CECM: Constrained evidential C-means algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 894-914.
    3. Ficko, Andrej & Boncina, Andrej, 2013. "Probabilistic typology of management decision making in private forest properties," Forest Policy and Economics, Elsevier, vol. 27(C), pages 34-43.
    4. B. Baris Alkan & Afsin Sahin, 2011. "Measuring inequalities in the distribution of health workers by bi-plot approach: The case of Turkey," Journal of Economics and Behavioral Studies, AMH International, vol. 2(2), pages 57-66.
    5. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    6. Wolf Dieter Heinbach & Stefanie Schröpfer, 2007. "Typisierung der Tarifvertragslandschaft. Eine Clusteranalyse der tarifvertraglichen Öffnungsklauseln (Identifying Types of Flexible Bargaining Agreements Using Cluster Analysis)," Diskussionspapiere aus dem Institut für Volkswirtschaftslehre der Universität Hohenheim 286/2007, Department of Economics, University of Hohenheim, Germany.
    7. Michael Greenacre & Paul Lewi, 2005. "Distributional equivalence and subcompositional coherence in the analysis of contingency tables, ratio-scale measurements and compositional data," Economics Working Papers 908, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 2007.
    8. Heungsun Hwang & Marc Tomiuk, 2010. "Fuzzy clusterwise quasi-likelihood generalized linear models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 255-270, December.
    9. Anna Maria Fiori & Francesco Porro, 2023. "A compositional analysis of systemic risk in European financial institutions," Annals of Finance, Springer, vol. 19(3), pages 325-354, September.
    10. Germ`a Coenders & N'uria Arimany Serrat, 2023. "Accounting statement analysis at industry level. A gentle introduction to the compositional approach," Papers 2305.16842, arXiv.org, revised Sep 2024.
    11. John Martin, 2014. "Spatial processes and Galois/concept lattices," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(2), pages 961-981, March.
    12. Shu-Yi Chi & Tsorng-Chyi Hwang & Li-Hsien Chien, 2023. "Business Policy and Competitiveness of Farmers’ Organizations—Empirical Evidence from Taiwan," Agriculture, MDPI, vol. 13(3), pages 1-17, February.
    13. Greenacre, Michael, 2009. "Power transformations in correspondence analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3107-3116, June.
    14. Michael Greenacre, 2009. "Contribution biplots," Economics Working Papers 1162, Department of Economics and Business, Universitat Pompeu Fabra, revised Jan 2011.
    15. Ronald L. Breiger & John W. Mohr, 2004. "Institutional Logics from the Aggregation of Organizational Networks: Operational Procedures for the Analysis of Counted Data," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 17-43, May.
    16. Michael Greenacre, 2023. "The chi-square standardization, combined with Box-Cox transformation, is a valid alternative to transforming to logratios in compositional data analysis," Economics Working Papers 1857, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Morais, Joanna & Simioni, Michel & Thomas-Agnan, Christine, 2016. "A tour of regression models for explaining shares," TSE Working Papers 16-742, Toulouse School of Economics (TSE).
    18. repec:jss:jstsof:13:i05 is not listed on IDEAS
    19. Tom Wilderjans & Dirk Depril & Iven Van Mechelen, 2013. "Additive Biclustering: A Comparison of One New and Two Existing ALS Algorithms," Journal of Classification, Springer;The Classification Society, vol. 30(1), pages 56-74, April.
    20. Jan Skála & Radim Vácha & Pavel Čupr, 2018. "Which Compounds Contribute Most to Elevated Soil Pollution and the Corresponding Health Risks in Floodplains in the Headwater Areas of the Central European Watershed?," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    21. Haedo, Christian & Mouchart, Michel, 2018. "Automatic biclustering of regions and sectors," LIDAM Discussion Papers ISBA 2018026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:29:y:2012:i:2:p:144-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.