IDEAS home Printed from https://ideas.repec.org/a/jns/jbstat/v230y2010i5p630-652.html
   My bibliography  Save this article

Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties

Author

Listed:
  • Ziegler Andreas

    (Swiss Federal Institute of Technology (ETH) Zurich, Center of Economic Research, Zürichbergstrasse 18, 8032 Zurich, Switzerland, and University of Kassel, Germany, and Centre for European Economic Research (ZEW), Mannheim, Germany)

Abstract

This paper analyzes small sample properties of several versions of z-tests in multinomial probit models under simulated maximum likelihood estimation. Our Monte Carlo experiments show that z-tests on utility function coefficients provide more robust results than z-tests on variance covariance parameters. As expected, both the number of observations and the number of random draws in the incorporated Geweke-Hajivassiliou-Keane (GHK) simulator have on average a positive impact on the conformities between the shares of type I errors and the nominal significance levels. Furthermore, an increase of the number of observations leads to an expected decrease of the shares of type II errors, whereas the number of random draws in the GHK simulator surprisingly has no significant effect in this respect. One main result of our study is that the use of the robust version of the simulated z-test statistics is not systematically more favorable than the use of other versions. However, the application of the z-test statistics that exclusively include the Hessian matrix of the simulated loglikelihood function to estimate the information matrix often leads to substantial computational problems.

Suggested Citation

  • Ziegler Andreas, 2010. "Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(5), pages 630-652, October.
  • Handle: RePEc:jns:jbstat:v:230:y:2010:i:5:p:630-652
    DOI: 10.1515/jbnst-2010-0507
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jbnst-2010-0507
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jbnst-2010-0507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Axel Borsch-Supan & Vassilis Hajivassiliou & Laurence J. Kotlikoff, 1992. "Health, Children, and Elderly Living Arrangements: A Multiperiod-Multinomial Probit Model with Unobserved Heterogeneity and Autocorrelated Errors," NBER Chapters, in: Topics in the Economics of Aging, pages 79-108, National Bureau of Economic Research, Inc.
    2. Sándor, Zsolt & Train, Kenneth, 2004. "Quasi-random simulation of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
    3. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    4. Dansie, B. R., 1985. "Parameter estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 19(6), pages 526-528, December.
    5. Inkmann, Joachim, 2000. "Misspecified heteroskedasticity in the panel probit model: A small sample comparison of GMM and SML estimators," Journal of Econometrics, Elsevier, vol. 97(2), pages 227-259, August.
    6. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    7. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    8. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    9. Leonard, Kenneth L, 2007. "Learning in Health Care: Evidence of Learning about Clinician Quality in Tanzania," Economic Development and Cultural Change, University of Chicago Press, vol. 55(3), pages 531-555, April.
    10. Wakabayashi, Midori & Horioka, Charles Yuji, 2009. "Is the eldest son different? The residential choice of siblings in Japan," Japan and the World Economy, Elsevier, vol. 21(4), pages 337-348, December.
    11. Keane, Michael P, 1997. "Modeling Heterogeneity and State Dependence in Consumer Choice Behavior," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 310-327, July.
    12. Liesenfeld, Roman & Richard, Jean-François, 2010. "The dynamic invariant multinomial probit model: Identification, pretesting and estimation," Journal of Econometrics, Elsevier, vol. 155(2), pages 117-127, April.
    13. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    14. Bolduc, Denis & Lacroix, Guy & Muller, Christophe, 1996. "The choice of medical providers in rural Benin: A comparison of discrete choice models," Journal of Health Economics, Elsevier, vol. 15(4), pages 477-498, August.
    15. Lee, Lung-fei, 1999. "Statistical Inference With Simulated Likelihood Functions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 337-360, June.
    16. Lee, Lung-Fei, 1995. "Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 437-483, June.
    17. Schmidheiny, Kurt, 2006. "Income segregation and local progressive taxation: Empirical evidence from Switzerland," Journal of Public Economics, Elsevier, vol. 90(3), pages 429-458, February.
    18. Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Paper 321, Department of Economics, University of Pittsburgh, revised Jan 2007.
    19. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    20. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    21. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    22. Bunch, David S., 1991. "Estimability in the Multinomial Probit Model," University of California Transportation Center, Working Papers qt1gf1t128, University of California Transportation Center.
    23. Liesenfeld, Roman & Richard, Jean-François, 2010. "Efficient estimation of probit models with correlated errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 367-376, June.
    24. Keane, Michael, 1993. "Simulation estimation for panel data models with limited dependent variables," MPRA Paper 53029, University Library of Munich, Germany.
    25. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    26. Bolduc, Denis, 1999. "A practical technique to estimate multinomial probit models in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 63-79, February.
    27. Lee, Lung-Fei, 1997. "Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results," Journal of Econometrics, Elsevier, vol. 82(1), pages 1-35.
    28. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    29. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    30. Wei Zhang & Lung-fei Lee, 2004. "Simulation estimation of dynamic discrete choice panel models with accelerated importance samplers," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 120-142, June.
    31. Velandia, Margarita & Rejesus, Roderick M. & Knight, Thomas O. & Sherrick, Bruce J., 2009. "Factors Affecting Farmers' Utilization of Agricultural Risk Management Tools: The Case of Crop Insurance, Forward Contracting, and Spreading Sales," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 41(1), pages 107-123, April.
    32. Bertschek, Irene & Lechner, Michael, 1998. "Convenient estimators for the panel probit model," Journal of Econometrics, Elsevier, vol. 87(2), pages 329-371, September.
    33. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
    34. Garrido, Rodrigo A. & Leva, Mabel, 2004. "Port of destination and carrier selection for fruit exports: a multi-dimensional space-time multi-nomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 657-667, August.
    35. Vijverberg, Wim P. M., 1997. "Monte Carlo evaluation of multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 281-307.
    36. Lorenzo Cappellari & Stephen P. Jenkins, 2003. "Multivariate probit regression using simulated maximum likelihood," Stata Journal, StataCorp LP, vol. 3(3), pages 278-294, September.
    37. Andreas Ziegler, 2007. "Simulated classical tests in multinomial probit models," Statistical Papers, Springer, vol. 48(4), pages 655-681, October.
    38. Bunch, David S., 1991. "Estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Ziegler, 2007. "Simulated classical tests in multinomial probit models," Statistical Papers, Springer, vol. 48(4), pages 655-681, October.
    2. Ziegler, Andreas, 2001. "Simulated z-tests in multinomial probit models," ZEW Discussion Papers 01-53, ZEW - Leibniz Centre for European Economic Research.
    3. Rennings, Klaus & Ziegler, Andreas & Zwick, Thomas, 2001. "Employment changes in environmentally innovative firms," ZEW Discussion Papers 01-46, ZEW - Leibniz Centre for European Economic Research.
    4. Andreas Ziegler, 2010. "Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis," CER-ETH Economics working paper series 10/125, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    5. Liesenfeld, Roman & Richard, Jean-François, 2010. "Efficient estimation of probit models with correlated errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 367-376, June.
    6. Klaus Rennings & Andreas Ziegler & Thomas Zwick, 2004. "The effect of environmental innovations on employment changes: an econometric analysis," Business Strategy and the Environment, Wiley Blackwell, vol. 13(6), pages 374-387, November.
    7. Victoria Prowse, 2012. "Modeling Employment Dynamics With State Dependence and Unobserved Heterogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 411-431, April.
    8. Karthik K. Srinivasan & Hani S. Mahmassani, 2005. "A Dynamic Kernel Logit Model for the Analysis of Longitudinal Discrete Choice Data: Properties and Computational Assessment," Transportation Science, INFORMS, vol. 39(2), pages 160-181, May.
    9. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    10. Ziegler, Andreas, 2002. "Simulated Classical Tests in the Multiperiod Multinomial Probit Model," ZEW Discussion Papers 02-38, ZEW - Leibniz Centre for European Economic Research.
    11. Ziegler, Andreas, 2012. "Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1372-1385.
    12. Liesenfeld, Roman & Richard, Jean-François, 2010. "The dynamic invariant multinomial probit model: Identification, pretesting and estimation," Journal of Econometrics, Elsevier, vol. 155(2), pages 117-127, April.
    13. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    14. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    15. GRAMMIG, Joachim & HUJER, Reinhard & SCHEIDLER, Michael, 2001. "The econometrics of airline network management," LIDAM Discussion Papers CORE 2001055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
    17. Daziano, Ricardo A. & Achtnicht, Martin, 2012. "Forecasting adoption of ultra-low-emission vehicles using the GHK simulator and Bayes estimates of a multinomial probit model," ZEW Discussion Papers 12-017, ZEW - Leibniz Centre for European Economic Research.
    18. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    19. Lee, Lung-Fei, 1997. "Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results," Journal of Econometrics, Elsevier, vol. 82(1), pages 1-35.
    20. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jns:jbstat:v:230:y:2010:i:5:p:630-652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.