A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2021. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Tinbergen Institute Discussion Papers 21-016/III, Tinbergen Institute.
References listed on IDEAS
- Clark, Todd E. & McCracken, Michael W., 2015.
"Nested forecast model comparisons: A new approach to testing equal accuracy,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 160-177.
- Todd E. Clark & Michael W. McCracken, 2009. "Nested forecast model comparisons: a new approach to testing equal accuracy," Working Papers 2009-050, Federal Reserve Bank of St. Louis.
- Todd E. Clark & Michael W. McCracken, 2009. "Nested forecast model comparisons: a new approach to testing equal accuracy," Research Working Paper RWP 09-11, Federal Reserve Bank of Kansas City.
- Stock, James H. & Watson, Mark W., 2014.
"Estimating turning points using large data sets,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 368-381.
- James H. Stock & Mark W. Watson, 2010. "Estimating Turning Points Using Large Data Sets," NBER Working Papers 16532, National Bureau of Economic Research, Inc.
- Blix, Mårten, 1999. "Forecasting Swedish Inflation With a Markov Switching VAR," Working Paper Series 76, Sveriges Riksbank (Central Bank of Sweden).
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
- Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
- James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
- Baştürk, N. & Borowska, A. & Grassi, S. & Hoogerheide, L. & van Dijk, H.K., 2019.
"Forecast density combinations of dynamic models and data driven portfolio strategies,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 170-186.
- Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart (L.F.) Hoogerheide & Herman (H.K.) van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Tinbergen Institute Discussion Papers 18-076/III, Tinbergen Institute.
- Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Working Paper 2018/10, Norges Bank.
- Sergei Morozov & Sudhanshu Mathur, 2012. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 151-182, August.
- Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006.
"A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series,"
Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
- Stock, James & Watson, Mark & Marcellino, Massimiliano, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," CEPR Discussion Papers 4976, C.E.P.R. Discussion Papers.
- Massimiliano Marcellino & James Stock & Mark Watson, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," Working Papers 285, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Stock, James H. & Watson, Mark W., 1999.
"Forecasting inflation,"
Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
- James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(1 (Spring), pages 81-156.
- Koop, Gary & Korobilis, Dimitris, 2010.
"Bayesian Multivariate Time Series Methods for Empirical Macroeconomics,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
- Koop, Gary & Korobilis, Dimitris, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," MPRA Paper 20125, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Working Paper series 47_09, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2013.
"Large time-varying parameter VARs,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
- Koop, Gary & Korobilis, Dimitris, 2012. "Large time-varying parameter VARs," MPRA Paper 38591, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2012. "Large Time-Varying Parameter VARs," Working Paper series 11_12, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2012. "Large time-varying parameter VARs," Working Papers 2012_04, Business School - Economics, University of Glasgow.
- Koop, Gary & Korobilis, Dimitris, 2012. "Large Time-Varying Parameter VARs," SIRE Discussion Papers 2012-14, Scottish Institute for Research in Economics (SIRE).
- Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013.
"Real-Time Inflation Forecasting in a Changing World,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
- Groen, J.J.J. & Paap, R., 2009. "Real-time inflation forecasting in a changing world," Econometric Institute Research Papers EI 2009-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-time inflation forecasting in a changing world," Staff Reports 388, Federal Reserve Bank of New York.
- Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-Time Inflation Forecasting in a Changing World," Working Paper 2009/16, Norges Bank.
- Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015.
"Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox," Tinbergen Institute Discussion Papers 13-055/III, Tinbergen Institute, revised 16 Jan 2015.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo Matlab Toolbox," Working Papers 2013:08, Department of Economics, University of Venice "Ca' Foscari".
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox," CREATES Research Papers 2013-09, Department of Economics and Business Economics, Aarhus University.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Harman K. van Dijk, 2014. "Parallel sequential Monte Carlo for efficient density combination: The DeCo MATLAB toolbox," Working Paper 2014/11, Norges Bank.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Daniele Bianchi & Matthias Büchner & Andrea Tamoni, 2021. "Bond Risk Premiums with Machine Learning [Quadratic term structure models: Theory and evidence]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1046-1089.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017.
"Forecasting compositional time series: A state space approach,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
- Ralph D. Snyder & J. Keith Ord & Anne B. Koehler & Keith R. McLaren & Adrian Beaumont, 2015. "Forecasting Compositional Time Series: A State Space Approach," Monash Econometrics and Business Statistics Working Papers 11/15, Monash University, Department of Econometrics and Business Statistics.
- Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
- Watson, Mark W. & Stock, James H., 2014. "Estimating turning points using large data sets," Scholarly Articles 33192198, Harvard University Department of Economics.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Andrews, Donald W K & Monahan, J Christopher, 1992.
"An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator,"
Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
- Donald W.K. Andrews & Christopher J. Monahan, 1990. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Cowles Foundation Discussion Papers 942, Cowles Foundation for Research in Economics, Yale University.
- Aldrich, Eric M. & Fernández-Villaverde, Jesús & Ronald Gallant, A. & Rubio-Ramírez, Juan F., 2011.
"Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors,"
Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 386-393, March.
- Eric M. Aldrich & Jesús Fernández-Villaverde & Ronald Gallant & Juan F. Rubio-RamÃrez, 2010. "Tapping the Supercomputer Under Your Desk: Solving Dynamic Equilibrium Models with Graphics Processors," PIER Working Paper Archive 10-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Eric M. Aldrich & Jesús Fernández-Villaverde & A. Ronald Gallant & Juan F. Rubio-Ramírez, 2010. "Tapping the Supercomputer Under Your Desk: Solving Dynamic Equilibrium Models with Graphics Processors," NBER Working Papers 15909, National Bureau of Economic Research, Inc.
- Eric M. Aldrich & Jesus Fernandez-Villaverde & A. Ronald Gallant & Juan F. Rubio-Ramirez, 2010. "Tapping the Supercomputer Under Your Desk: Solving Dynamic Equilibrium Models with Graphics Processors," Working Papers 10-89, Duke University, Department of Economics.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018.
"Combined Density Nowcasting in an Uncertain Economic Environment,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an Uncertain Economic Environment," Tinbergen Institute Discussion Papers 14-152/III, Tinbergen Institute.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- Kenneth F. Wallis, 1987. "Time Series Analysis Of Bounded Economic Variables," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(1), pages 115-123, January.
- Ravazzolo Francesco & Vahey Shaun P., 2014.
"Forecast densities for economic aggregates from disaggregate ensembles,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 367-381, September.
- Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast Densities for Economic Aggregates from Disaggregate Ensembles," CAMA Working Papers 2010-10, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast densities for economic aggregates from disaggregate ensembles," Working Paper 2010/02, Norges Bank.
- Sydney C. Ludvigson & Serena Ng, 2009.
"Macro Factors in Bond Risk Premia,"
The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
- Sydeny C. Ludvigson & Serena Ng, 2005. "Macro Factors in Bond Risk Premia," NBER Working Papers 11703, National Bureau of Economic Research, Inc.
- Boonen, Tim J. & Guillen, Montserrat & Santolino, Miguel, 2019. "Forecasting compositional risk allocations," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 79-86.
- Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
- Billheimer D. & Guttorp P. & Fagan W.F., 2001. "Statistical Interpretation of Species Composition," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1205-1214, December.
- Matt Dziubinski & Stefano Grassi, 2014.
"Heterogeneous Computing in Economics: A Simplified Approach,"
Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 485-495, April.
- Matt P. Dziubinski & Stefano Grassi, 2012. "Heterogeneous Computing in Economics: A Simplified Approach," CREATES Research Papers 2012-15, Department of Economics and Business Economics, Aarhus University.
- Katz, Jonathan N. & King, Gary, 1999.
"A Statistical Model for Multiparty Electoral Data,"
American Political Science Review, Cambridge University Press, vol. 93(1), pages 15-32, March.
- Katz, Jonathan N., 1997. "A Statistical Model for Multiparty Electoral Data," Working Papers 1005, California Institute of Technology, Division of the Humanities and Social Sciences.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Petra Kynčlová & Peter Filzmoser & Karel Hron, 2015. "Modeling Compositional Time Series with Vector Autoregressive Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(4), pages 303-314, July.
- Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Aldrich, EM, 2014. "GPU Computing in Economics," Santa Cruz Department of Economics, Working Paper Series qt8p12748g, Department of Economics, UC Santa Cruz.
- James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(1 (Spring), pages 81-156.
- McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Knut Are Aastveit & Jamie L. Cross & Herman K. van Dijk, 2023.
"Quantifying Time-Varying Forecast Uncertainty and Risk for the Real Price of Oil,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 523-537, April.
- Knut Are Aastveit & Jamie Cross & Herman K. van Dijk, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Tinbergen Institute Discussion Papers 21-053/III, Tinbergen Institute.
- Knut Are Aastveit & Jamie L. Cross & Herman K. van Dijk, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Working Paper 2021/3, Norges Bank.
- Knut Are Aastveit & Jamie Cross & Herman K. Djik, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Working Papers No 03/2021, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2023.
"A flexible predictive density combination for large financial data sets in regular and crisis periods,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2022. "A Flexible Predictive Density Combination for Large Financial Data Sets in Regular and Crisis Periods," Tinbergen Institute Discussion Papers 22-053/III, Tinbergen Institute.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015.
"Dynamic predictive density combinations for large data sets in economics and finance,"
Working Paper
2015/12, Norges Bank.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2016. "Dynamic Predictive Density Combinations for Large Data Sets in Economics and Finance," Tinbergen Institute Discussion Papers 15-084/III, Tinbergen Institute, revised 03 Jul 2017.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2019.
"Forecast density combinations with dynamic learning for large data sets in economics and finance,"
Working Paper
2019/7, Norges Bank.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzollo & Herman K. van Dijk, 2019. "Forecast Density Combinations with Dynamic Learning for Large Data Sets in Economics and Finance," Tinbergen Institute Discussion Papers 19-025/III, Tinbergen Institute.
- Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2023.
"A flexible predictive density combination for large financial data sets in regular and crisis periods,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2022. "A Flexible Predictive Density Combination for Large Financial Data Sets in Regular and Crisis Periods," Tinbergen Institute Discussion Papers 22-053/III, Tinbergen Institute.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020.
"A Scoring Rule for Factor and Autoregressive Models Under Misspecification,"
Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," International Association of Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
- Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Domenico Sartore, 2018. "A scoring rule for factor and autoregressive models under misspecification," Working Papers 2018:18, Department of Economics, University of Venice "Ca' Foscari".
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017.
"Forecasting GDP with global components: This time is different,"
International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
- Hilde C. Bjørnland & Francesco Ravazzolo & Leif Anders Thorsrud, 2015. "Forecasting GDP with global components. This time is different," Working Paper 2015/05, Norges Bank.
- Hilde C. Bjørnland & Francesco Ravazzolo & Leif Anders Thorsrud, 2015. "Forecasting GDP with global components. This time is different," Working Papers No 1/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Hilde C. Bjornland & Francesco Ravazzolo & Leif Anders Thorsrud, 2016. "Forecasting GDP with global components. This time is different," CAMA Working Papers 2016-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022.
"Optimal probabilistic forecasts: When do they work?,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Andres Ramirez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Monash Econometrics and Business Statistics Working Papers 33/20, Monash University, Department of Econometrics and Business Statistics.
- Gael M. Martin & Rub'en Loaiza-Maya & David T. Frazier & Worapree Maneesoonthorn & Andr'es Ram'irez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Papers 2009.09592, arXiv.org.
- Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017.
"Tracking the Slowdown in Long-Run GDP Growth,"
The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
- Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2014. "Tracking the Slowdown in Long-Run GDP Growth," Discussion Papers 1604, Centre for Macroeconomics (CFM), revised Jan 2016.
- Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2016. "Tracking the slowdown in long-run GDP growth," LSE Research Online Documents on Economics 86243, London School of Economics and Political Science, LSE Library.
- Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2017. "Tracking the slowdown in long-run GDP growth," LSE Research Online Documents on Economics 81869, London School of Economics and Political Science, LSE Library.
- Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2016. "Tracking the slowdown in long-run GDP growth," Bank of England working papers 587, Bank of England.
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Petrella, Ivan & Drechsel, Thomas & Antolin-Diaz, Juan, 2014. "Following the Trend: Tracking GDP when Long-Run Growth is Uncertain," CEPR Discussion Papers 10272, C.E.P.R. Discussion Papers.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020.
"Comparing the forecasting performances of linear models for electricity prices with high RES penetration,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Working Papers No 2/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Papers 1801.01093, arXiv.org, revised Nov 2019.
More about this item
Keywords
Density Combination; Large Set of Predictive Densities; Compositional Factor Models; Nonlinear State Space; Bayesian Inference;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-01-04 (Econometrics)
- NEP-ETS-2021-01-04 (Econometric Time Series)
- NEP-MAC-2021-01-04 (Macroeconomics)
- NEP-ORE-2021-01-04 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:20-27. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Savioli (email available below). General contact details of provider: https://edirc.repec.org/data/rcfeait.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.