IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v26y2005i2p141-161.html
   My bibliography  Save this article

Computational Issues in the Sequential Probit Model: A Monte Carlo Study

Author

Listed:
  • Patrick Waelbroeck

Abstract

We discuss computational issues in the sequential probit model that have limited its use in applied research. We estimate parameters of the model by the method of simulated maximum likelihood (SML) and by Bayesian MCMC algorithms. We provide Monte Carlo evidence on the relative performance of both estimators and find that the SML procedure computes standard errors of the estimated correlation coefficients that are less reliable. Given the numerical difficulties associated with the estimation procedures, we advise the applied researcher to use both the stochastic optimization algorithm in the Simulated Maximum Likelihood approach and the Bayesian MCMC algorithm to check the compatibility of the results. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Patrick Waelbroeck, 2005. "Computational Issues in the Sequential Probit Model: A Monte Carlo Study," Computational Economics, Springer;Society for Computational Economics, vol. 26(2), pages 141-161, October.
  • Handle: RePEc:kap:compec:v:26:y:2005:i:2:p:141-161
    DOI: 10.1007/s10614-005-0667-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-005-0667-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-005-0667-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    2. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    3. Cannings, Kathy & Montmarquette, Claude & Mahseredjian, Sophie, 1996. "Entrance quotas and admission to medical schools: a sequential probit model," Economics of Education Review, Elsevier, vol. 15(2), pages 163-174, April.
    4. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    5. repec:dau:papers:123456789/13785 is not listed on IDEAS
    6. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    7. Monjon, Stephanie & Waelbroeck, Patrick, 2003. "Assessing spillovers from universities to firms: evidence from French firm-level data," International Journal of Industrial Organization, Elsevier, vol. 21(9), pages 1255-1270, November.
    8. James H. Albert & Siddhartha Chib, 2001. "Sequential Ordinal Modeling with Applications to Survival Data," Biometrics, The International Biometric Society, vol. 57(3), pages 829-836, September.
    9. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    10. Schmidt, Peter, 1977. "Estimation of seemingly unrelated regressions with unequal numbers of observations," Journal of Econometrics, Elsevier, vol. 5(3), pages 365-377, May.
    11. Kajal Lahiri & Chuanming Gao & Bernard Wixon, 2020. "Value of Sample Separation Information in a Sequential Probit Model," Arthaniti: Journal of Economic Theory and Practice, , vol. 19(2), pages 151-176, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John-Paul Ferguson, 2008. "The Eyes of the Needles: A Sequential Model of Union Organizing Drives, 1999–2004," ILR Review, Cornell University, ILR School, vol. 62(1), pages 3-21, October.
    2. Maksym, Obrizan, 2010. "A Bayesian Model of Sample Selection with a Discrete Outcome Variable," MPRA Paper 28577, University Library of Munich, Germany.
    3. Raphaële Préget, 2011. "What is the cost of low participation in French Timber auctions?," Post-Print hal-00670762, HAL.
    4. Daisuke Nagakura & Masahito Kobayashi, 2009. "Testing The Sequential Logit Model Against The Nested Logit Model," The Japanese Economic Review, Japanese Economic Association, vol. 60(3), pages 345-361, September.
    5. David, Bounie & Abel, François & Patrick, Waelbroeck, 2016. "Debit card and demand for cash," Journal of Banking & Finance, Elsevier, vol. 73(C), pages 55-66.
    6. Gebrenegus Ghilagaber & Paraskevi Peristera, 2014. "Sequential probit modelling of family and community effects on educational progress among children to Polish and Turkish immigrants in Sweden," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3243-3252, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
    2. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    3. Haaijer, Marinus E., 1996. "Predictions in conjoint choice experiments : the x-factor probit model," Research Report 96B22, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    4. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    5. Siddhartha Chib & Edward Greenberg & Yuxin Chen, 1998. "MCMC Methods for Fitting and Comparing Multinomial Response Models," Econometrics 9802001, University Library of Munich, Germany, revised 06 May 1998.
    6. Rennings, Klaus & Ziegler, Andreas & Zwick, Thomas, 2001. "Employment changes in environmentally innovative firms," ZEW Discussion Papers 01-46, ZEW - Leibniz Centre for European Economic Research.
    7. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    8. Piatek, Rémi & Gensowski, Miriam, 2017. "A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System," IZA Discussion Papers 11042, Institute of Labor Economics (IZA).
    9. Ziegler Andreas, 2010. "Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(5), pages 630-652, October.
    10. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    11. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    12. Klaus Rennings & Andreas Ziegler & Thomas Zwick, 2004. "The effect of environmental innovations on employment changes: an econometric analysis," Business Strategy and the Environment, Wiley Blackwell, vol. 13(6), pages 374-387, November.
    13. Gould, Brian W. & Dong, Diansheng, 2000. "The Decision Of When To Buy A Frequently Purchased Good: A Multi-Period Probit Model," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-17, December.
    14. Inkmann, Joachim, 2001. "Accounting for Nonresponse Heterogeneity in Panel Data," CoFE Discussion Papers 01/03, University of Konstanz, Center of Finance and Econometrics (CoFE).
    15. B. Larivière & D. Van Den Poel, 2004. "Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: The case of financial services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/223, Ghent University, Faculty of Economics and Business Administration.
    16. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    17. Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
    18. Stephan Wachtel & Thomas Otter, 2013. "Successive Sample Selection and Its Relevance for Management Decisions," Marketing Science, INFORMS, vol. 32(1), pages 170-185, September.
    19. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    20. Maruyama, Shiko, 2014. "Estimation of finite sequential games," Journal of Econometrics, Elsevier, vol. 178(2), pages 716-726.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:26:y:2005:i:2:p:141-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.