IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/9802001.html
   My bibliography  Save this paper

MCMC Methods for Fitting and Comparing Multinomial Response Models

Author

Listed:
  • Siddhartha Chib

    (Washington University)

  • Edward Greenberg

    (Washington University)

  • Yuxin Chen

    (Washington University)

Abstract

This paper is concerned with statistical inference in multinomial probit, multinomial-$t$ and multinomial logit models. New Markov chain Monte Carlo (MCMC) algorithms for fitting these models are introduced and compared with existing MCMC methods. The question of parameter identification in the multinomial probit model is readdressed. Model comparison issues are also discussed and the method of Chib (1995) is utilized to find Bayes factors for competing multinomial probit and multinomial logit models. The methods and ideas are illustrated in detail with an example.

Suggested Citation

  • Siddhartha Chib & Edward Greenberg & Yuxin Chen, 1998. "MCMC Methods for Fitting and Comparing Multinomial Response Models," Econometrics 9802001, University Library of Munich, Germany, revised 06 May 1998.
  • Handle: RePEc:wpa:wuwpem:9802001
    Note: Type of Document - ps; prepared on TeX; pages: 29 ; figures: included
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9802/9802001.ps.gz
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9802/9802001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    2. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    3. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    4. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    5. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    6. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    7. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    8. repec:cup:etheor:v:12:y:1996:i:3:p:409-31 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
    2. Duncan Fong & Sunghoon Kim & Zhe Chen & Wayne DeSarbo, 2016. "A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 161-183, March.
    3. Luiz Moutinho & Graeme D. Hutcheson, 2006. "Store Patronage: The Utility Of A Multi-Method, Multi-Nomial Logistic Regression Model For Predicting Store Choice," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 0(1), pages 5-25.
    4. Hoshino, Takahiro, 2008. "A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1413-1429, January.
    5. Lahiri, Kajal & Gao, Jian, 2002. "Bayesian analysis of nested logit model by Markov chain Monte Carlo," Journal of Econometrics, Elsevier, vol. 111(1), pages 103-133, November.
    6. Daziano, Ricardo A., 2013. "Conditional-logit Bayes estimators for consumer valuation of electric vehicle driving range," Resource and Energy Economics, Elsevier, vol. 35(3), pages 429-450.
    7. Minjung Kyung & Jeff Gill & George Casella, 2011. "Sampling schemes for generalized linear Dirichlet process random effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(3), pages 259-290, August.
    8. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    9. Patil, Priyadarshan N. & Dubey, Subodh K. & Pinjari, Abdul R. & Cherchi, Elisabetta & Daziano, Ricardo & Bhat, Chandra R., 2017. "Simulation evaluation of emerging estimation techniques for multinomial probit models," Journal of choice modelling, Elsevier, vol. 23(C), pages 9-20.
    10. Zhehan Jiang & Jonathan Templin, 2019. "Gibbs Samplers for Logistic Item Response Models via the Pólya–Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 358-374, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    2. Vassilis A. Hajivassiliou, 1993. "Simulating Normal Rectangle Probabilities and Their Derivatives: The Effects of Vectorization," Cowles Foundation Discussion Papers 1049, Cowles Foundation for Research in Economics, Yale University.
    3. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
    4. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    5. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    6. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    7. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    8. Harris, Katherine M. & Keane, Michael P., 1998. "A model of health plan choice:: Inferring preferences and perceptions from a combination of revealed preference and attitudinal data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 131-157, November.
    9. Rennings, Klaus & Ziegler, Andreas & Zwick, Thomas, 2001. "Employment changes in environmentally innovative firms," ZEW Discussion Papers 01-46, ZEW - Leibniz Centre for European Economic Research.
    10. Keane, Michael P. & Wasi, Nada, 2016. "How to model consumer heterogeneity? Lessons from three case studies on SP and RP data," Research in Economics, Elsevier, vol. 70(2), pages 197-231.
    11. Natarajan, Ranjini & McCulloch, Charles E. & Kiefer, Nicholas M., 2000. "A Monte Carlo EM method for estimating multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 34(1), pages 33-50, July.
    12. Park, Sang Soo & Lee, Chung-Ki, 2011. "베이지안 추정법을 이용한 주택선택의 다항프로빗 모형 분석 [Analysis of housing choice using multinomial probit model – Bayesian estimation]," MPRA Paper 37150, University Library of Munich, Germany.
    13. van Dijk, Bram & Paap, Richard, 2008. "Explaining individual response using aggregated data," Journal of Econometrics, Elsevier, vol. 146(1), pages 1-9, September.
    14. Ziegler Andreas, 2010. "Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(5), pages 630-652, October.
    15. Gould, Brian W. & Dong, Diansheng, 2000. "The Decision Of When To Buy A Frequently Purchased Good: A Multi-Period Probit Model," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-17, December.
    16. Erdem, Tulin & Keane, Michael P. & Sun, Baohong, 1998. "Missing price and coupon availability data in scanner panels: Correcting for the self-selection bias in choice model parameters," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 177-196, November.
    17. Elrod, Terry & Keane, Michael, 1995. "A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data," MPRA Paper 52434, University Library of Munich, Germany.
    18. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    19. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    20. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.

    More about this item

    Keywords

    Bayes factor; Gibbs sampling; Monte Carlo EM algorithm; Marginal likelihood; Metropolis-Hastings algorithm; Multinomial logit; Multinomial probit; Multinomial-t; Model comparison.;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:9802001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.