IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v71y2016icp86-101.html
   My bibliography  Save this article

Measuring nonfundamentalness for structural VARs

Author

Listed:
  • Soccorsi, Stefano

Abstract

As nonfundamental vector moving averages do not have causal VAR representations, standard structural VAR methods are deemed inappropriate for recovering the economic shocks of general equilibrium models with nonfundamental reduced forms. In the previous literature it has been pointed out that, despite nonfundamentalness, structural VARs may still be good approximating models. I characterize nonfundamentalness as bias depending on the zeros of moving average filters. However, measuring the nonfundamental bias is not trivial because of the simultaneous occurrence of lag truncation bias. I propose a method to disentangle the bias based on population spectral density and derive a measure for the nonfundamental bias in population. In the application, I find that the SVAR exercises of Sims (2012) are accurate because the nonfundamental bias is mild.

Suggested Citation

  • Soccorsi, Stefano, 2016. "Measuring nonfundamentalness for structural VARs," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 86-101.
  • Handle: RePEc:eee:dyncon:v:71:y:2016:i:c:p:86-101
    DOI: 10.1016/j.jedc.2016.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188916301324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2016.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lippi, Marco & Reichlin, Lucrezia, 1993. "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Comment," American Economic Review, American Economic Association, vol. 83(3), pages 644-652, June.
    2. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    3. Eric R. Sims, 2012. "News, Non-Invertibility, and Structural VARs," Advances in Econometrics, in: DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments, pages 81-135, Emerald Group Publishing Limited.
    4. Massimo Franchi & Paolo Paruolo, 2015. "Minimality of State Space Solutions of DSGE Models and Existence Conditions for Their VAR Representation," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 613-626, December.
    5. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2005. "Can Long-Run Restrictions Identify Technology Shocks?," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1237-1278, December.
    6. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    7. Mario Forni & Luca Gambetti & Luca Sala, 2016. "VAR Information and the Empirical Validation of DSGE Models," Center for Economic Research (RECent) 119, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    8. Karel Mertens & MortenO. Ravn, 2010. "Measuring the Impact of Fiscal Policy in the Face of Anticipation: A Structural VAR Approach," Economic Journal, Royal Economic Society, vol. 120(544), pages 393-413, May.
    9. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    10. Lippi, Marco & Reichlin, Lucrezia, 1994. "VAR analysis, nonfundamental representations, blaschke matrices," Journal of Econometrics, Elsevier, vol. 63(1), pages 307-325, July.
    11. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    12. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    13. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
    14. Barsky, Robert B. & Sims, Eric R., 2011. "News shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 58(3), pages 273-289.
    15. Paul Beaudry & Franck Portier, 2006. "Stock Prices, News, and Economic Fluctuations," American Economic Review, American Economic Association, vol. 96(4), pages 1293-1307, September.
    16. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2014. "Dynamic Factor Models, Cointegration and Error Correction Mechanisms," Working Papers ECARES ECARES 2014-14, ULB -- Universite Libre de Bruxelles.
    17. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
    18. D.S. Poskitt & Wenying Yao, 2012. "VAR Modeling and Business Cycle Analysis: A Taxonomy of Errors," Monash Econometrics and Business Statistics Working Papers 11/12, Monash University, Department of Econometrics and Business Statistics.
    19. Paul Beaudry & Patrick Fève & Alain Guay & Franck Portier, 2015. "When is Nonfundamentalness in VARs a Real Problem? An Application to News Shocks," NBER Working Papers 21466, National Bureau of Economic Research, Inc.
    20. Forni, Mario & Gambetti, Luca, 2014. "Sufficient information in structural VARs," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 124-136.
    21. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noisy News in Business Cycles," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(4), pages 122-152, October.
    22. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2011. "Non‐Fundamentalness in Structural Econometric Models: A Review," International Statistical Review, International Statistical Institute, vol. 79(1), pages 16-47, April.
    23. Eric M. Leeper & Todd B. Walker & Shu‐Chun Susan Yang, 2013. "Fiscal Foresight and Information Flows," Econometrica, Econometric Society, vol. 81(3), pages 1115-1145, May.
    24. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106, National Bureau of Economic Research, Inc.
    25. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    26. Christopher Otrok & Andre Kurmann, 2011. "News Shocks and the Term Structure of Interest Rates: A Challenge for DSGE Models," 2011 Meeting Papers 426, Society for Economic Dynamics.
    27. Helmut Lütkepohl, 2012. "Fundamental Problems with Nonfundamental Shocks," Discussion Papers of DIW Berlin 1230, DIW Berlin, German Institute for Economic Research.
    28. Mertens, Elmar, 2012. "Are spectral estimators useful for long-run restrictions in SVARs?," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1831-1844.
    29. Franchi, Massimo & Vidotto, Anna, 2013. "A check for finite order VAR representations of DSGE models," Economics Letters, Elsevier, vol. 120(1), pages 100-103.
    30. De Graeve, Ferre & Westermark, Andreas, 2013. "Un-truncating VARs," Working Paper Series 271, Sveriges Riksbank (Central Bank of Sweden).
    31. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    2. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    3. Iskrev, Nikolay, 2018. "Are asset price data informative about news shocks? A DSGE perspective," Working Paper Series 2161, European Central Bank.
    4. Mario Forni & Luca Gambetti & Luca Sala, 2016. "VAR Information and the Empirical Validation of DSGE Models," Center for Economic Research (RECent) 119, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    5. Angelini, Giovanni & Sorge, Marco M., 2021. "Under the same (Chole)sky: DNK models, timing restrictions and recursive identification of monetary policy shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    6. Paul Beaudry & Patrick Feve & Alain Guay & Franck Portier, 2019. "When is Nonfundamentalness in SVARs a Real Problem?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 34, pages 221-243, October.
    7. Mirela S. Miescu & Haroon Mumtaz, 2019. "Proxy structural vector autoregressions, informational sufficiency and the role of monetary policy," Working Papers 894, Queen Mary University of London, School of Economics and Finance.
    8. Huiqin Jiang & Xiao Zhang & Xinxiao Shao & Jianqiang Bao, 2018. "How Do the Industrial Structure Optimization and Urbanization Development Affect Energy Consumption in Zhejiang Province of China?," Sustainability, MDPI, vol. 10(6), pages 1-12, June.
    9. Iskrev, Nikolay, 2019. "On the sources of information about latent variables in DSGE models," European Economic Review, Elsevier, vol. 119(C), pages 318-332.
    10. Tamara Teplova & Mikova Evgeniia & Qaiser Munir & Nataliya Pivnitskaya, 2023. "Black-Litterman model with copula-based views in mean-CVaR portfolio optimization framework with weight constraints," Economic Change and Restructuring, Springer, vol. 56(1), pages 515-535, February.
    11. Nikolay Iskrev, 2021. "Spectral decomposition of the information about latent variables in dynamic macroeconomic models," Working Papers w202105, Banco de Portugal, Economics and Research Department.
    12. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Sala & Luca Gambetti & Mario Forni, 2016. "VAR Information and the Empirical Validation of DSGE Models," 2016 Meeting Papers 260, Society for Economic Dynamics.
    2. Iskrev, Nikolay, 2019. "On the sources of information about latent variables in DSGE models," European Economic Review, Elsevier, vol. 119(C), pages 318-332.
    3. Mario Forni & Luca Gambetti & Luca Sala, 2018. "Fundamentalness, Granger Causality and Aggregation," Center for Economic Research (RECent) 139, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    4. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    5. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    6. Paul Beaudry & Patrick Feve & Alain Guay & Franck Portier, 2019. "When is Nonfundamentalness in SVARs a Real Problem?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 34, pages 221-243, October.
    7. Nelimarkka, Jaakko, 2017. "Evidence on News Shocks under Information Deficiency," MPRA Paper 80850, University Library of Munich, Germany.
    8. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    9. Nikolay Iskrev, 2018. "Are asset price data informative about news shocks? A DSGE perspective," Working Papers REM 2018/33, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    10. Forni, Mario & Gambetti, Luca, 2014. "Sufficient information in structural VARs," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 124-136.
    11. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Fabio Canova & Mehdi Hamidi Sahneh, 2018. "Are Small-Scale SVARs Useful for Business Cycle Analysis? Revisiting Nonfundamentalness," Journal of the European Economic Association, European Economic Association, vol. 16(4), pages 1069-1093.
    13. Nadav Ben Zeev, 2019. "Is There A Single Shock That Drives The Majority Of Business Cycle Fluctuations?," Working Papers 1906, Ben-Gurion University of the Negev, Department of Economics.
    14. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers 21/13, Institute for Fiscal Studies.
    15. Massimo Franchi & Paolo Paruolo, 2015. "Minimality of State Space Solutions of DSGE Models and Existence Conditions for Their VAR Representation," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 613-626, December.
    16. Patrick Fève & Alain Guay, 2019. "Sentiments in SVARs," The Economic Journal, Royal Economic Society, vol. 129(618), pages 877-896.
    17. repec:bny:wpaper:0042 is not listed on IDEAS
    18. Eric M. Leeper & Todd B. Walker & Shu‐Chun Susan Yang, 2013. "Fiscal Foresight and Information Flows," Econometrica, Econometric Society, vol. 81(3), pages 1115-1145, May.
    19. Féve, Patrick & Jidoud, Ahmat, 2012. "Identifying News Shocks from SVARs," Journal of Macroeconomics, Elsevier, vol. 34(4), pages 919-932.
    20. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noise Bubbles," Economic Journal, Royal Economic Society, vol. 127(604), pages 1940-1976, September.
    21. Massimo Franchi, 2013. "Comment on: Ravenna, F., 2007. Vector autoregressions and reduced form representations of DSGE models. Journal of Monetary Economics 54, 2048-2064," DSS Empirical Economics and Econometrics Working Papers Series 2013/2, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.

    More about this item

    Keywords

    Nonfundamentalness; SVAR; DSGE; News shocks;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy; Modern Monetary Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:71:y:2016:i:c:p:86-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.