IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/14430.html
   My bibliography  Save this paper

Are Structural VARs with Long-Run Restrictions Useful in Developing Business Cycle Theory?

Author

Listed:
  • V. V. Chari
  • Patrick J. Kehoe
  • Ellen R. McGrattan

Abstract

The central finding of the recent structural vector autoregression (SVAR) literature with a differenced specification of hours is that technology shocks lead to a fall in hours. Researchers have used this finding to argue that real business cycle models are unpromising. We subject this SVAR specification to a natural economic test by showing that when applied to data generated from a multiple-shock business cycle model, the procedure incorrectly concludes that the model could not have generated the data as long as demand shocks play a nontrivial role. We also test another popular specification, which uses the level of hours, and show that with nontrivial demand shocks, it cannot distinguish between real business cycle models and sticky price models. The crux of the problem for both SVAR specifications is that available data necessitate a VAR with a small number of lags and, when demand shocks play a nontrivial role, such a VAR is a poor approximation to the model's infinite order VAR.

Suggested Citation

  • V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2008. "Are Structural VARs with Long-Run Restrictions Useful in Developing Business Cycle Theory?," NBER Working Papers 14430, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:14430
    Note: EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w14430.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Prescott, Edward C., 1986. "Theory ahead of business-cycle measurement," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 11-44, January.
    2. Greenwood, Jeremy & Hercowitz, Zvi, 1991. "The Allocation of Capital and Time over the Business Cycle," Journal of Political Economy, University of Chicago Press, vol. 99(6), pages 1188-1214, December.
    3. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    4. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    5. Anton Braun, R., 1994. "Tax disturbances and real economic activity in the postwar United States," Journal of Monetary Economics, Elsevier, vol. 33(3), pages 441-462, June.
    6. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    7. Benhabib, Jess & Rogerson, Richard & Wright, Randall, 1991. "Homework in Macroeconomics: Household Production and Aggregate Fluctuations," Journal of Political Economy, University of Chicago Press, vol. 99(6), pages 1166-1187, December.
    8. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 2000. "The role of investment-specific technological change in the business cycle," European Economic Review, Elsevier, vol. 44(1), pages 91-115, January.
    9. Marvin Goodfriend & Robert G. King, 1997. "The New Neoclassical Synthesis and the Role of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 231-296, National Bureau of Economic Research, Inc.
    10. Anderson, Evan W. & McGrattan, Ellen R. & Hansen, Lars Peter & Sargent, Thomas J., 1996. "Mechanics of forming and estimating dynamic linear economies," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 4, pages 171-252, Elsevier.
    11. Jonas D. M. Fisher, 2006. "The Dynamic Effects of Neutral and Investment-Specific Technology Shocks," Journal of Political Economy, University of Chicago Press, vol. 114(3), pages 413-451, June.
    12. Hall, Robert E, 1997. "Macroeconomic Fluctuations and the Allocation of Time," Journal of Labor Economics, University of Chicago Press, vol. 15(1), pages 223-250, January.
    13. Stockman, Alan C & Tesar, Linda L, 1995. "Tastes and Technology in a Two-Country Model of the Business Cycle: Explaining International Comovements," American Economic Review, American Economic Association, vol. 85(1), pages 168-185, March.
    14. Christopher A. Sims, 1989. "Models and Their Uses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(2), pages 489-494.
    15. Cooley, Thomas F & Hansen, Gary D, 1989. "The Inflation Tax in a Real Business Cycle Model," American Economic Review, American Economic Association, vol. 79(4), pages 733-748, September.
    16. Hansen, Lars Peter & Sargent, Thomas J., 1980. "Formulating and estimating dynamic linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 7-46, May.
    17. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393, Elsevier.
    18. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    19. Gali, Jordi & Lopez-Salido, J. David & Valles, Javier, 2003. "Technology shocks and monetary policy: assessing the Fed's performance," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 723-743, May.
    20. McGrattan, Ellen R., 1994. "The macroeconomic effects of distortionary taxation," Journal of Monetary Economics, Elsevier, vol. 33(3), pages 573-601, June.
    21. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
    22. Cogley, Timothy & Nason, James M, 1995. "Output Dynamics in Real-Business-Cycle Models," American Economic Review, American Economic Association, vol. 85(3), pages 492-511, June.
    23. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2005. "Can Long-Run Restrictions Identify Technology Shocks?," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1237-1278, December.
    24. Galí, Jordi & Rabanal, Pau, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBC Model Fit Post-War US Data?," CEPR Discussion Papers 4522, C.E.P.R. Discussion Papers.
    25. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2009. "New Keynesian Models: Not Yet Useful for Policy Analysis," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 242-266, January.
    26. Lippi, Marco & Reichlin, Lucrezia, 1993. "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Comment," American Economic Review, American Economic Association, vol. 83(3), pages 644-652, June.
    27. Eichenbaum, Martin, 1991. "Real business-cycle theory : Wisdom or whimsy?," Journal of Economic Dynamics and Control, Elsevier, vol. 15(4), pages 607-626, October.
    28. Finn E. Kydland & Edward C. Prescott, 1991. "Hours and Employment Variation in Business-Cycle Theory," International Economic Association Series, in: Niels Thygesen & Kumaraswamy Velupillai & Stefano Zambelli (ed.), Business Cycles, chapter 5, pages 107-134, Palgrave Macmillan.
    29. Bencivenga, Valerie R, 1992. "An Econometric Study of Hours and Output Variation with Preference Shocks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(2), pages 449-471, May.
    30. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2007. "Business Cycle Accounting," Econometrica, Econometric Society, vol. 75(3), pages 781-836, May.
    31. Rotemberg, Julio J & Woodford, Michael, 1992. "Oligopolistic Pricing and the Effects of Aggregate Demand on Economic Activity," Journal of Political Economy, University of Chicago Press, vol. 100(6), pages 1153-1207, December.
    32. Matthew D. Shapiro & Mark W. Watson, 1988. "Sources of Business Cycle Fluctuations," NBER Chapters, in: NBER Macroeconomics Annual 1988, Volume 3, pages 111-156, National Bureau of Economic Research, Inc.
    33. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1.
    34. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
    35. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106, National Bureau of Economic Research, Inc.
    36. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    37. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    38. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    39. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    40. Faust, Jon & Leeper, Eric M, 1997. "When Do Long-Run Identifying Restrictions Give Reliable Results?," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 345-353, July.
    41. Burmeister, Edwin & Wall, Kent D & Hamilton, James D, 1986. "Estimation of Unobserved Expected Monthly Inflation Using Kalman Filtering," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(2), pages 147-160, April.
    42. Cooley, Thomas F. & Dwyer, Mark, 1998. "Business cycle analysis without much theory A look at structural VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 57-88.
    43. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : I. The basic neoclassical model," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 195-232.
    44. Jordi Galí, 1992. "How Well Does The IS-LM Model Fit Postwar U. S. Data?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 709-738.
    45. Neville Francis & Valerie A. Ramey, 2002. "Is the Technology-Driven Real Business Cycle Hypothesis Dead?," NBER Working Papers 8726, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2004. "A Critique of Structural VARs Using Real Business Cycle Theory," Levine's Bibliography 122247000000000518, UCLA Department of Economics.
    2. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    3. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    4. Malley, Jim & Woitek, Ulrich, 2010. "Technology shocks and aggregate fluctuations in an estimated hybrid RBC model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1214-1232, July.
    5. Ambler, Steve & Guay, Alain & Phaneuf, Louis, 2012. "Endogenous business cycle propagation and the persistence problem: The role of labor-market frictions," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 47-62.
    6. Sergio Rebelo, 2005. "Real Business Cycle Models: Past, Present, and Future," NBER Working Papers 11401, National Bureau of Economic Research, Inc.
    7. Jordi Gali & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBS Model Fit Postwar U.S. Data?," NBER Working Papers 10636, National Bureau of Economic Research, Inc.
    8. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
    9. Martial Dupaigne & Patrick Feve & Julien Matheron, 2007. "Technology Shocks, Non-stationary Hours and DSVAR," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(2), pages 238-255, April.
    10. Justiniano, Alejandro & Primiceri, Giorgio E. & Tambalotti, Andrea, 2010. "Investment shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 132-145, March.
    11. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    12. Giancarlo Corsetti & Luca Dedola & Sylvain Leduc, 2008. "Productivity, External Balance, and Exchange Rates: Evidence on the Transmission Mechanism among G7 Countries," NBER Chapters, in: NBER International Seminar on Macroeconomics 2006, pages 117-194, National Bureau of Economic Research, Inc.
    13. Patrick Fève & Alain Guay, 2010. "Identification of Technology Shocks in Structural Vars," Economic Journal, Royal Economic Society, vol. 120(549), pages 1284-1318, December.
    14. Peter Ireland & Scott Schuh, 2008. "Productivity and U.S. Macroeconomic Performance: Interpreting the Past and Predicting the Future with a Two-Sector Real Business Cycle Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 473-492, July.
    15. Schorfheide, Frank & Fuentes-Albero, Cristina & Kryshko, Maxym & Santaeulà lia-Llopis, Raül, 2009. "Methods versus Substance: Measuring the Effects of Technology Shocks on Hours," CEPR Discussion Papers 7474, C.E.P.R. Discussion Papers.
    16. Laura Bisio & Andrea Faccini, 2010. "Does Cointegration Matter? An Analysis in a RBC Perspective," Working Papers in Public Economics 133, University of Rome La Sapienza, Department of Economics and Law.
    17. Dupaigne, M. & Fève, P. & Matheron, J., 2005. "Technology Shock and Employment: Do We Really Need DSGE Models with a Fall in Hours?," Working papers 124, Banque de France.
    18. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    19. Neville Francis & Valerie A. Ramey, 2009. "Measures of per Capita Hours and Their Implications for the Technology‐Hours Debate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1071-1097, September.
    20. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007, Elsevier.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E13 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Neoclassical
    • E2 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:14430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.