IDEAS home Printed from https://ideas.repec.org/a/kap/ecopln/v56y2023i1d10.1007_s10644-022-09435-y.html
   My bibliography  Save this article

Black-Litterman model with copula-based views in mean-CVaR portfolio optimization framework with weight constraints

Author

Listed:
  • Tamara Teplova

    (National Research University Higher School of Economics)

  • Mikova Evgeniia

    (National Research University Higher School of Economics)

  • Qaiser Munir

    (Department of Economics, Institute of Business Administration
    University of Bahrain)

  • Nataliya Pivnitskaya

    (National Research University Higher School of Economics)

Abstract

This study examines the portfolio optimization problem by exploiting daily data of 10 international Exchange Trade Funds (ETF) from 2012 to 2022. We extend the Black-Litterman (BL) approach using ARMA-GARCH-copula-based expected returns as a proxy for investor views and use the CVaR metric as a risk measure in the optimization procedure. The BL approach provides a Bayesian methodology for combining the equilibrium returns and the investor views to produce expected returns. We use Regular Vine (R-vine) copula since it provides a flexible multivariate dependency modeling. The suggested approach is compared against the copula-CVaR portfolio, which likewise a BL copula approach avoids excessive corner solutions that many optimization approaches would generate in case of extreme values of estimated parameters. We compare the performance of these two approaches using out-of-sample back-testing against two benchmarks: Mean–Variance optimizations (MV) and equal weights portfolio (EW). To further reduce the sensitivity of considered strategies to input parameters, we evaluate out-of-sample performance at three levels of maximum weight constraints: 30%, 40%, and 50%. Moreover, in this paper, we consider different levels of view confidence—τ in the Black-Litterman model as it significantly affects the obtained results and inferences. We calculate and report the portfolios’ tail risks, maximum drawdown, turnover, and the break-even point for all optimization approaches. Our empirical analysis indicates better performance for the CBL portfolio regarding lower tail risk and higher risk-adjusted returns, and the copula-CVaR portfolio is better regarding lower turnover and higher break-even point.

Suggested Citation

  • Tamara Teplova & Mikova Evgeniia & Qaiser Munir & Nataliya Pivnitskaya, 2023. "Black-Litterman model with copula-based views in mean-CVaR portfolio optimization framework with weight constraints," Economic Change and Restructuring, Springer, vol. 56(1), pages 515-535, February.
  • Handle: RePEc:kap:ecopln:v:56:y:2023:i:1:d:10.1007_s10644-022-09435-y
    DOI: 10.1007/s10644-022-09435-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10644-022-09435-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10644-022-09435-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Tae-Hwy & Long, Xiangdong, 2009. "Copula-based multivariate GARCH model with uncorrelated dependent errors," Journal of Econometrics, Elsevier, vol. 150(2), pages 207-218, June.
    2. Silva, Thuener & Pinheiro, Plácido Rogério & Poggi, Marcus, 2017. "A more human-like portfolio optimization approach," European Journal of Operational Research, Elsevier, vol. 256(1), pages 252-260.
    3. Kolm, Petter & Ritter, Gordon, 2017. "On the Bayesian interpretation of Black–Litterman," European Journal of Operational Research, Elsevier, vol. 258(2), pages 564-572.
    4. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    5. Jean-David FERMANIAN & Olivier SCAILLET, 2003. "Nonparametric Estimation of Copulas for Time Series," FAME Research Paper Series rp57, International Center for Financial Asset Management and Engineering.
    6. Kakouris, Iakovos & Rustem, Berç, 2014. "Robust portfolio optimization with copulas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 28-37.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    9. Arreola Hernandez, Jose, 2014. "Are oil and gas stocks from the Australian market riskier than coal and uranium stocks? Dependence risk analysis and portfolio optimization," Energy Economics, Elsevier, vol. 45(C), pages 528-536.
    10. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    11. Platanakis, Emmanouil & Urquhart, Andrew, 2019. "Portfolio management with cryptocurrencies: The role of estimation risk," Economics Letters, Elsevier, vol. 177(C), pages 76-80.
    12. Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
    13. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    14. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    15. Adam Krzemienowski & Sylwia Szymczyk, 2016. "Portfolio optimization with a copula-based extension of conditional value-at-risk," Annals of Operations Research, Springer, vol. 237(1), pages 219-236, February.
    16. Adam Krzemienowski & Sylwia Szymczyk, 2016. "Portfolio optimization with a copula-based extension of conditional value-at-risk," Annals of Operations Research, Springer, vol. 237(1), pages 219-236, February.
    17. Wolfgang Bessler & Heiko Opfer & Dominik Wolff, 2017. "Multi-asset portfolio optimization and out-of-sample performance: an evaluation of Black–Litterman, mean-variance, and naïve diversification approaches," The European Journal of Finance, Taylor & Francis Journals, vol. 23(1), pages 1-30, January.
    18. Soccorsi, Stefano, 2016. "Measuring nonfundamentalness for structural VARs," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 86-101.
    19. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    20. Huang, Dashan & Zhu, Shu-Shang & Fabozzi, Frank J. & Fukushima, Masao, 2008. "Portfolio selection with uncertain exit time: A robust CVaR approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 594-623, February.
    21. Sahamkhadam, Maziar & Stephan, Andreas & Östermark, Ralf, 2022. "Copula-based Black–Litterman portfolio optimization," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1055-1070.
    22. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    23. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    24. Bekiros, Stelios & Hernandez, Jose Arreola & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2015. "Multivariate dependence risk and portfolio optimization: An application to mining stock portfolios," Resources Policy, Elsevier, vol. 46(P2), pages 1-11.
    25. Mulvey, John M. & Erkan, Hafize G., 2006. "Applying CVaR for decentralized risk management of financial companies," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 627-644, February.
    26. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    27. Mendes, Beatriz Vaz de Melo & Marques, Daniel S., 2012. "Choosing an optimal investment strategy: The role of robust pair-copulas based portfolios," Emerging Markets Review, Elsevier, vol. 13(4), pages 449-464.
    28. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    29. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    30. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    2. Vahidin Jeleskovic & Claudio Latini & Zahid I. Younas & Mamdouh A. S. Al-Faryan, 2023. "Optimization of portfolios with cryptocurrencies: Markowitz and GARCH-Copula model approach," Papers 2401.00507, arXiv.org.
    3. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    4. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    5. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    6. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    7. Su, Xiaoshan & Li, Yuhan, 2024. "Robust portfolio selection with subjective risk aversion under dependence uncertainty," Economic Modelling, Elsevier, vol. 132(C).
    8. Su, Xiaoshan & Bai, Manying & Han, Yingwei, 2021. "Robust portfolio selection with regime switching and asymmetric dependence," Economic Modelling, Elsevier, vol. 99(C).
    9. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.
    10. EnDer Su, 2017. "Measuring and Testing Tail Dependence and Contagion Risk Between Major Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 325-351, August.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    12. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
    13. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    14. Amira, Khaled & Taamouti, Abderrahim & Tsafack, Georges, 2011. "What drives international equity correlations? Volatility or market direction?," Journal of International Money and Finance, Elsevier, vol. 30(6), pages 1234-1263, October.
    15. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    16. Roch, Oriol & Alegre, Antonio, 2006. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1312-1329, November.
    17. Martin Hoesli & Kustrim Reka, 2013. "Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 47(1), pages 1-35, July.
    18. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-21, February.
    19. Shahzad, Syed Jawad Hussain & Arreola-Hernandez, Jose & Bekiros, Stelios & Shahbaz, Muhammad & Kayani, Ghulam Mujtaba, 2018. "A systemic risk analysis of Islamic equity markets using vine copula and delta CoVaR modeling," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 104-127.
    20. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.

    More about this item

    Keywords

    Asset allocation; Portfolio optimization; Copula; Black-Litterman; CVaR; ARMA-GARCH;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:ecopln:v:56:y:2023:i:1:d:10.1007_s10644-022-09435-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.