IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/9601.html
   My bibliography  Save this paper

Noisy News in Business cycles

Author

Listed:
  • Lippi, Marco
  • Forni, Mario
  • Sala, Luca
  • Gambetti, Luca

Abstract

In a situation where agents can only observe a noisy signal of the shock to future economic fundamentals, SVAR models can still be successfully employed to estimate the shock and the associated impulse response functions. Identification is reached by means of dynamic rotations of the reduced form residuals. We use our identification approach to investigate the role of the "noise" shock the component of the signal observed by agents which is unrelated to economic fundamentals as a source of business cycle fluctuations. We find that noise shocks generate hump-shaped responses of GDP, consumption and investment and account for about a third of their prediction error variance at business cycle horizons.

Suggested Citation

  • Lippi, Marco & Forni, Mario & Sala, Luca & Gambetti, Luca, 2013. "Noisy News in Business cycles," CEPR Discussion Papers 9601, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:9601
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP9601
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    2. Karel Mertens & MortenO. Ravn, 2010. "Measuring the Impact of Fiscal Policy in the Face of Anticipation: A Structural VAR Approach," Economic Journal, Royal Economic Society, vol. 120(544), pages 393-413, May.
    3. Domenico Giannone & Lucrezia Reichlin, 2006. "Does information help recovering structural shocks from past observations?," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 455-465, 04-05.
    4. George-Marios Angeletos & Jennifer La'O, 2010. "Noisy Business Cycles," NBER Chapters, in: NBER Macroeconomics Annual 2009, Volume 24, pages 319-378, National Bureau of Economic Research, Inc.
    5. Olivier J. Blanchard & Jean-Paul L'Huillier & Guido Lorenzoni, 2013. "News, Noise, and Fluctuations: An Empirical Exploration," American Economic Review, American Economic Association, vol. 103(7), pages 3045-3070, December.
    6. Lippi, Marco & Reichlin, Lucrezia, 1994. "VAR analysis, nonfundamental representations, blaschke matrices," Journal of Econometrics, Elsevier, vol. 63(1), pages 307-325, July.
    7. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    8. Barsky, Robert B. & Sims, Eric R., 2011. "News shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 58(3), pages 273-289.
    9. Forni, Mario & Gambetti, Luca, 2014. "Sufficient information in structural VARs," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 124-136.
    10. Guido Lorenzoni, 2010. "Optimal Monetary Policy with Uncertain Fundamentals and Dispersed Information ," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(1), pages 305-338.
    11. Forni, Mario & Gambetti, Luca, 2010. "Fiscal Foresight and the Effects of Goverment Spending," CEPR Discussion Papers 7840, C.E.P.R. Discussion Papers.
    12. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    13. Den Haan, Wouter J. & Kaltenbrunner, Georg, 2009. "Anticipated growth and business cycles in matching models," Journal of Monetary Economics, Elsevier, vol. 56(3), pages 309-327, April.
    14. Robert B. Barsky & Eric R. Sims, 2012. "Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence," American Economic Review, American Economic Association, vol. 102(4), pages 1343-1377, June.
    15. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    16. Nir Jaimovich & Sergio Rebelo, 2009. "Can News about the Future Drive the Business Cycle?," American Economic Review, American Economic Association, vol. 99(4), pages 1097-1118, September.
    17. Eric M. Leeper & Todd B. Walker & Shu-Chun Susan Yang, 2011. "Foresight and Information Flows," NBER Working Papers 16951, National Bureau of Economic Research, Inc.
    18. Lippi, Marco & Reichlin, Lucrezia, 1993. "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Comment," American Economic Review, American Economic Association, vol. 83(3), pages 644-652, June.
    19. Lucas, Robert Jr., 1972. "Expectations and the neutrality of money," Journal of Economic Theory, Elsevier, vol. 4(2), pages 103-124, April.
    20. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    21. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    22. Baxter, Brad & Graham, Liam & Wright, Stephen, 2011. "Invertible and non-invertible information sets in linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 295-311, March.
    23. Guido Lorenzoni, 2009. "A Theory of Demand Shocks," American Economic Review, American Economic Association, vol. 99(5), pages 2050-2084, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Forni & Luca Gambetti & Luca Sala, 2017. "News, Uncertainty and Economic Fluctuations (No News is Good News)," Center for Economic Research (RECent) 132, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    2. Forni, Mario & Gambetti, Luca & Sala, Luca, 2017. "News, Uncertainty and Economic Fluctuations," CEPR Discussion Papers 12139, C.E.P.R. Discussion Papers.
    3. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    4. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    5. Angeletos, G.-M. & Lian, C., 2016. "Incomplete Information in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1065-1240, Elsevier.
    6. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noise Bubbles," Economic Journal, Royal Economic Society, vol. 127(604), pages 1940-1976, September.
    7. Forni, Mario & Gambetti, Luca, 2014. "Sufficient information in structural VARs," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 124-136.
    8. Michael Rousakis, 2013. "Expectations and Fluctuations: The Role of Monetary Policy," 2013 Meeting Papers 681, Society for Economic Dynamics.
    9. Gambetti, Luca & Moretti, Laura, 2017. "News, Noise and Oil Price Swings," Research Technical Papers 12/RT/17, Central Bank of Ireland.
    10. George‐Marios Angeletos & Fabrice Collard & Harris Dellas, 2018. "Quantifying Confidence," Econometrica, Econometric Society, vol. 86(5), pages 1689-1726, September.
    11. Benhima, Kenza, 2019. "Booms and busts with dispersed information," Journal of Monetary Economics, Elsevier, vol. 107(C), pages 32-47.
    12. Hürtgen, Patrick, 2014. "Consumer misperceptions, uncertain fundamentals, and the business cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 279-292.
    13. Rousakis, Michael, 2012. "Expectations and Fluctuations: The Role of Monetary Policy," Economic Research Papers 270655, University of Warwick - Department of Economics.
    14. Daniela Fantozzi & Alessio Muscarnera, 2021. "A News-based Policy Index for Italy: Expectations and Fiscal Policy," CEIS Research Paper 509, Tor Vergata University, CEIS, revised 11 Mar 2021.
    15. Miranda-Agrippino, Silvia & Hacıoglu Hoke, Sinem, 2018. "When creativity strikes: news shocks and business cycle fluctuations," LSE Research Online Documents on Economics 90381, London School of Economics and Political Science, LSE Library.
    16. Rousakis, Michael, 2012. "Expectations and Fluctuations : The Role of Monetary Policy," The Warwick Economics Research Paper Series (TWERPS) 984, University of Warwick, Department of Economics.
    17. George-Marios Angeletos, 2018. "Frictional Coordination," Journal of the European Economic Association, European Economic Association, vol. 16(3), pages 563-603.
    18. Luca Gambetti & Nicolò Maffei-Faccioli & Sarah Zoi, 2022. "Bad News, Good News: Coverage and Response Asymmetries," Working Paper 2022/8, Norges Bank.
    19. Adams, Jonathan J., 2023. "Moderating noise-driven macroeconomic fluctuations under dispersed information," Journal of Economic Dynamics and Control, Elsevier, vol. 156(C).
    20. Laumer, Sebastian & Violaris, Andreas-Entony, 2024. "Unconventional monetary policy and policy foresight," Journal of Economic Dynamics and Control, Elsevier, vol. 164(C).

    More about this item

    Keywords

    Business cycle; Imperfect information; News; Noise; Nonfundamentalness; Svar;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy; Modern Monetary Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:9601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.