IDEAS home Printed from https://ideas.repec.org/p/fip/fedgif/792.html
   My bibliography  Save this paper

Can long-run restrictions identify technology shocks?

Author

Abstract

Gali's innovative approach of imposing long-run restrictions on a vector autoregression (VAR) to identify the effects of a technology shock has become widely utilized. In this paper, we investigate its reliability through Monte Carlo simulations of several relatively standard business cycle models. We find it encouraging that the impulse responses derived from applying the Gali methodology to the artificial data generally have the same sign and qualitative pattern as the true responses. However, we highlight the importance of small-sample bias in the estimated impulse responses and show that the magnitude and sign of this bias depend on the model structure. Accordingly, we caution against interpreting responses derived from this approach as \"model-independent\" stylized facts. Moreover, we find considerable estimation uncertainty about the quantitative impact of a technology shock on macroeconomic variables, and a corresponding level of uncertainty about the contribution of technology shocks to the business cycle.

Suggested Citation

  • Christopher J. Erceg & Luca Guerrieri & Christopher J. Gust, 2004. "Can long-run restrictions identify technology shocks?," International Finance Discussion Papers 792, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgif:792
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/ifdp/2004/792/default.htm
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/ifdp/2004/792/ifdp792.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gali, Jordi & Lopez-Salido, J. David & Valles, Javier, 2003. "Technology shocks and monetary policy: assessing the Fed's performance," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 723-743, May.
    2. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    3. Lippi, Marco & Reichlin, Lucrezia, 1993. "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Comment," American Economic Review, American Economic Association, vol. 83(3), pages 644-652, June.
    4. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    5. Jonas D. M. Fisher, 2002. "Technology shocks matter," Working Paper Series WP-02-14, Federal Reserve Bank of Chicago.
    6. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
    7. Burnside, Craig & Eichenbaum, Martin, 1996. "Factor-Hoarding and the Propagation of Business-Cycle Shocks," American Economic Review, American Economic Association, vol. 86(5), pages 1154-1174, December.
    8. Cogley, Timothy & Nason, James M, 1995. "Output Dynamics in Real-Business-Cycle Models," American Economic Review, American Economic Association, vol. 85(3), pages 492-511, June.
    9. Erceg, Christopher J. & Henderson, Dale W. & Levin, Andrew T., 2000. "Optimal monetary policy with staggered wage and price contracts," Journal of Monetary Economics, Elsevier, vol. 46(2), pages 281-313, October.
    10. Coenen Günter & Orphanides Athanasios & Wieland Volker, 2004. "Price Stability and Monetary Policy Effectiveness when Nominal Interest Rates are Bounded at Zero," The B.E. Journal of Macroeconomics, De Gruyter, vol. 4(1), pages 1-25, February.
    11. John Pencavel, 2002. "A Cohort Analysis of the Association between Work Hours and Wages among Men," Journal of Human Resources, University of Wisconsin Press, vol. 37(2), pages 251-274.
    12. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    13. Hall, Robert E, 1997. "Macroeconomic Fluctuations and the Allocation of Time," Journal of Labor Economics, University of Chicago Press, vol. 15(1), pages 223-250, January.
    14. Parkin, Michael, 1988. "A method for determining whether parameters in aggregative models are structural," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 29(1), pages 215-252, January.
    15. Rogerson, Richard, 1988. "Indivisible labor, lotteries and equilibrium," Journal of Monetary Economics, Elsevier, vol. 21(1), pages 3-16, January.
    16. Killingsworth, Mark R. & Heckman, James J., 1987. "Female labor supply: A survey," Handbook of Labor Economics, in: O. Ashenfelter & R. Layard (ed.), Handbook of Labor Economics, edition 1, volume 1, chapter 2, pages 103-204, Elsevier.
    17. Faust, Jon & Leeper, Eric M, 1997. "When Do Long-Run Identifying Restrictions Give Reliable Results?," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 345-353, July.
    18. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    19. Matthew D. Shapiro & Mark W. Watson, 1988. "Sources of Business Cycle Fluctuations," NBER Chapters, in: NBER Macroeconomics Annual 1988, Volume 3, pages 111-156, National Bureau of Economic Research, Inc.
    20. L. Wade, 1988. "Review," Public Choice, Springer, vol. 58(1), pages 99-100, July.
    21. Pencavel, John, 1987. "Labor supply of men: A survey," Handbook of Labor Economics, in: O. Ashenfelter & R. Layard (ed.), Handbook of Labor Economics, edition 1, volume 1, chapter 1, pages 3-102, Elsevier.
    22. Greenwood, Jeremy & Hercowitz, Zvi & Huffman, Gregory W, 1988. "Investment, Capacity Utilization, and the Real Business Cycle," American Economic Review, American Economic Association, vol. 78(3), pages 402-417, June.
    23. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    24. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    25. Anderson, Gary & Moore, George, 1985. "A linear algebraic procedure for solving linear perfect foresight models," Economics Letters, Elsevier, vol. 17(3), pages 247-252.
    26. Cooley, Thomas F. & Dwyer, Mark, 1998. "Business cycle analysis without much theory A look at structural VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 57-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    2. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    3. Peter N. Ireland, 2009. "On the Welfare Cost of Inflation and the Recent Behavior of Money Demand," American Economic Review, American Economic Association, vol. 99(3), pages 1040-1052, June.
    4. Peter Ireland & Scott Schuh, 2008. "Productivity and U.S. Macroeconomic Performance: Interpreting the Past and Predicting the Future with a Two-Sector Real Business Cycle Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 473-492, July.
    5. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2004. "A Critique of Structural VARs Using Real Business Cycle Theory," Levine's Bibliography 122247000000000518, UCLA Department of Economics.
    6. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    7. Danthine, Jean-Pierre & Kurmann, André, 2010. "The business cycle implications of reciprocity in labor relations," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 837-850, October.
    8. Ambler, Steve & Guay, Alain & Phaneuf, Louis, 2012. "Endogenous business cycle propagation and the persistence problem: The role of labor-market frictions," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 47-62.
    9. Sergio Rebelo, 2005. "Real Business Cycle Models: Past, Present, and Future," NBER Working Papers 11401, National Bureau of Economic Research, Inc.
    10. Patrick Fève & Alain Guay, 2010. "Identification of Technology Shocks in Structural Vars," Economic Journal, Royal Economic Society, vol. 120(549), pages 1284-1318, December.
    11. Thomet, Jacqueline & Wegmueller, Philipp, 2021. "Technology Shocks And Hours Worked: A Cross-Country Analysis," Macroeconomic Dynamics, Cambridge University Press, vol. 25(4), pages 1020-1052, June.
    12. King, Robert G. & Rebelo, Sergio T., 1999. "Resuscitating real business cycles," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 14, pages 927-1007, Elsevier.
    13. Jordi Gali & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBS Model Fit Postwar U.S. Data?," NBER Working Papers 10636, National Bureau of Economic Research, Inc.
    14. Fernald, John G., 2007. "Trend breaks, long-run restrictions, and contractionary technology improvements," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2467-2485, November.
    15. Francesco Busato & Alessandro Girardi & Amadeo Argentiero, 2005. "Technology and non-technology shocks in a two-sector economy," Economics Working Papers 2005-11, Department of Economics and Business Economics, Aarhus University.
    16. Martial Dupaigne & Patrick Feve & Julien Matheron, 2007. "Technology Shocks, Non-stationary Hours and DSVAR," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(2), pages 238-255, April.
    17. Rochelle M. Edge & Thomas Laubach & John C. Williams, 2003. "The responses of wages and prices to technology shocks," Finance and Economics Discussion Series 2003-65, Board of Governors of the Federal Reserve System (U.S.).
    18. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    19. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    20. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.

    More about this item

    Keywords

    Technology; Vector autoregression;

    JEL classification:

    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgif:792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.