IDEAS home Printed from https://ideas.repec.org/a/eee/moneco/v66y2014icp124-136.html
   My bibliography  Save this article

Sufficient information in structural VARs

Author

Listed:
  • Forni, Mario
  • Gambetti, Luca

Abstract

Necessary and sufficient conditions under which a VAR contains sufficient information to estimate the structural shocks are derived. On the basis of this theoretical result we propose two simple tests to detect informational deficiency and a procedure to amend a deficient VAR. A simulation based on a DSGE model with fiscal foresight suggests that our method correctly identifies and fixes the informational problem. In an empirical application, we show that a bivariate VAR including unemployment and labor productivity is informationally deficient. Once the relevant information is included into the model, technology shocks appear to be contractionary.

Suggested Citation

  • Forni, Mario & Gambetti, Luca, 2014. "Sufficient information in structural VARs," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 124-136.
  • Handle: RePEc:eee:moneco:v:66:y:2014:i:c:p:124-136
    DOI: 10.1016/j.jmoneco.2014.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304393214000634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmoneco.2014.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephanie Schmitt‐Grohé & Martín Uribe, 2012. "What's News in Business Cycles," Econometrica, Econometric Society, vol. 80(6), pages 2733-2764, November.
    2. Lippi, Marco & Reichlin, Lucrezia, 1993. "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Comment," American Economic Review, American Economic Association, vol. 83(3), pages 644-652, June.
    3. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    4. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    5. Forni, Mario & Reichlin, Lucrezia, 1996. "Dynamic Common Factors in Large Cross-Sections," Empirical Economics, Springer, vol. 21(1), pages 27-42.
    6. Karel Mertens & MortenO. Ravn, 2010. "Measuring the Impact of Fiscal Policy in the Face of Anticipation: A Structural VAR Approach," Economic Journal, Royal Economic Society, vol. 120(544), pages 393-413, May.
    7. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    8. Valerie A. Ramey, 2011. "Identifying Government Spending Shocks: It's all in the Timing," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(1), pages 1-50.
    9. Lippi, Marco & Reichlin, Lucrezia, 1994. "VAR analysis, nonfundamental representations, blaschke matrices," Journal of Econometrics, Elsevier, vol. 63(1), pages 307-325, July.
    10. Domenico Giannone & Lucrezia Reichlin, 2006. "Does information help recovering structural shocks from past observations?," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 455-465, 04-05.
    11. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    12. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noise Bubbles," Economic Journal, Royal Economic Society, vol. 127(604), pages 1940-1976, September.
    13. Mario Forni & Luca Gambetti, 2010. "Fiscal Foresight and the Effects of Government Spending," UFAE and IAE Working Papers 851.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    14. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    15. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
    16. Luca Gambetti, 2010. "Fiscal Policy, Foresight and the Trade Balance in the U.S," UFAE and IAE Working Papers 852.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    17. Barsky, Robert B. & Sims, Eric R., 2011. "News shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 58(3), pages 273-289.
    18. Paul Beaudry & Franck Portier, 2006. "Stock Prices, News, and Economic Fluctuations," American Economic Review, American Economic Association, vol. 96(4), pages 1293-1307, September.
    19. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    20. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noisy News in Business Cycles," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(4), pages 122-152, October.
    21. Eric M. Leeper & Todd B. Walker & Shu‐Chun Susan Yang, 2013. "Fiscal Foresight and Information Flows," Econometrica, Econometric Society, vol. 81(3), pages 1115-1145, May.
    22. Gelper, Sarah & Croux, Christophe, 2007. "Multivariate out-of-sample tests for Granger causality," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3319-3329, April.
    23. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    24. Eric M. Leeper & Todd B. Walker & Shu-Chun Susan Yang, 2008. "Fiscal Foresight: Analytics and Econometrics," NBER Working Papers 14028, National Bureau of Economic Research, Inc.
    25. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    26. Robert B. Barsky & Eric R. Sims, 2012. "Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence," American Economic Review, American Economic Association, vol. 102(4), pages 1343-1377, June.
    27. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    28. Barnichon, Regis, 2010. "Productivity and unemployment over the business cycle," Journal of Monetary Economics, Elsevier, vol. 57(8), pages 1013-1025, November.
    29. Eric Leeper & Todd Walker, 2011. "Information Flows and News Driven Business Cycles," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 55-71, January.
    30. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    31. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    32. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    33. Eric M. Leeper & Todd B. Walker & Shu-Chun Susan Yang, 2008. "Fiscal Foresight: Analytics and Econometrics," NBER Working Papers 14028, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Forni & Luca Gambetti, 2011. "Testing for Sufficient Information in Structural VARs," Working Papers 536, Barcelona School of Economics.
    2. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    3. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    4. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    5. Mario Forni & Luca Gambetti & Luca Sala, 2018. "Fundamentalness, Granger Causality and Aggregation," Center for Economic Research (RECent) 139, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    6. Nadav Ben Zeev, 2019. "Is There A Single Shock That Drives The Majority Of Business Cycle Fluctuations?," Working Papers 1906, Ben-Gurion University of the Negev, Department of Economics.
    7. Eric M. Leeper & Todd B. Walker & Shu‐Chun Susan Yang, 2013. "Fiscal Foresight and Information Flows," Econometrica, Econometric Society, vol. 81(3), pages 1115-1145, May.
    8. Luca Sala & Luca Gambetti & Mario Forni, 2016. "VAR Information and the Empirical Validation of DSGE Models," 2016 Meeting Papers 260, Society for Economic Dynamics.
    9. Soccorsi, Stefano, 2016. "Measuring nonfundamentalness for structural VARs," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 86-101.
    10. Eric M. Leeper & Alexander W. Richter & Todd B. Walker, 2012. "Quantitative Effects of Fiscal Foresight," American Economic Journal: Economic Policy, American Economic Association, vol. 4(2), pages 115-144, May.
    11. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noise Bubbles," Economic Journal, Royal Economic Society, vol. 127(604), pages 1940-1976, September.
    12. Ben Zeev, Nadav, 2018. "What can we learn about news shocks from the late 1990s and early 2000s boom-bust period?," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 94-105.
    13. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    14. Born, Benjamin & Peter, Alexandra & Pfeifer, Johannes, 2013. "Fiscal news and macroeconomic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2582-2601.
    15. Daniela Fantozzi & Alessio Muscarnera, 2021. "A News-based Policy Index for Italy: Expectations and Fiscal Policy," CEIS Research Paper 509, Tor Vergata University, CEIS, revised 11 Mar 2021.
    16. Forni, Mario & Gambetti, Luca, 2016. "Government spending shocks in open economy VARs," Journal of International Economics, Elsevier, vol. 99(C), pages 68-84.
    17. Pallara, Kevin, 2016. "The dynamic effects of government spending: a FAVAR approach," MPRA Paper 92283, University Library of Munich, Germany.
    18. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
    19. Fabio Canova & Mehdi Hamidi Sahneh, 2018. "Are Small-Scale SVARs Useful for Business Cycle Analysis? Revisiting Nonfundamentalness," Journal of the European Economic Association, European Economic Association, vol. 16(4), pages 1069-1093.
    20. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noisy News in Business Cycles," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(4), pages 122-152, October.

    More about this item

    Keywords

    Non-fundamentalness; FAVAR models; ABCD representation;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy; Modern Monetary Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:moneco:v:66:y:2014:i:c:p:124-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505566 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.