IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1528-1544.html
   My bibliography  Save this article

Objective Bayesian analysis for the normal compositional model

Author

Listed:
  • Kazianka, Hannes

Abstract

The issue of objective prior specification for the parameters in the normal compositional model is considered within the context of statistical analysis of linearly mixed structures in image processing. In particular, the Jeffreys prior for the vector of fractional abundances in case of a known covariance matrix is derived. If an additional unknown variance parameter is present, the Jeffreys prior and the reference prior are computed and it is proven that the resulting posterior distributions are proper. Markov chain Monte Carlo strategies are proposed to efficiently sample from the posterior distributions and the priors are compared on the grounds of the frequentist properties of the resulting Bayesian inferences. The default Bayesian analysis is illustrated by a dataset taken from fluorescence spectroscopy.

Suggested Citation

  • Kazianka, Hannes, 2012. "Objective Bayesian analysis for the normal compositional model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1528-1544.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1528-1544
    DOI: 10.1016/j.csda.2011.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731100315X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
    2. Xu, Ancha & Tang, Yincai, 2011. "Objective Bayesian analysis of accelerated competing failure models under Type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2830-2839, October.
    3. Hannes Kazianka & Michael Mulyk & Jürgen Pilz, 2011. "A Bayesian approach to estimating linear mixtures with unknown covariance structure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1801-1817, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    2. Napoleón Vargas Jurado & Kent M. Eskridge & Stephen D. Kachman & Ronald M. Lewis, 2018. "Using a Bayesian Hierarchical Linear Mixing Model to Estimate Botanical Mixtures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 190-207, June.
    3. Gunnar Taraldsen & Jarle Tufto & Bo H. Lindqvist, 2022. "Improper priors and improper posteriors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 969-991, September.
    4. Herbert Hove & Frank Beichelt & Parmod K. Kapur, 2017. "Estimation of the Frank copula model for dependent competing risks in accelerated life testing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 673-682, December.
    5. Cuirong Ren & Dongchu Sun, 2013. "Objective Bayesian analysis for CAR models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 457-472, June.
    6. Ferreira, Marco A.R. & De Oliveira, Victor, 2007. "Bayesian reference analysis for Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 789-812, April.
    7. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    8. Stefano F. Tonellato, 2005. "Identifiability Conditions for Spatio-Temporal Bayesian Dynamic Linear Models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 81-101.
    9. Olivier Parent & James P. LeSage, 2008. "Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 235-256.
    10. Victor Oliveira, 2012. "Bayesian analysis of conditional autoregressive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 107-133, February.
    11. Andrew J. Womack & Luis León-Novelo & George Casella, 2014. "Inference From Intrinsic Bayes' Procedures Under Model Selection and Uncertainty," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1040-1053, September.
    12. Marrel, Amandine & Iooss, Bertrand, 2024. "Probabilistic surrogate modeling by Gaussian process: A review on recent insights in estimation and validation," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    13. Victor De Oliveira, 2009. "Bayesian Analysis Of Conditional Autoriegressive Models," Working Papers 0095, College of Business, University of Texas at San Antonio.
    14. Park, Eunchun & Brorsen, B. Wade & Harri, Ardian, 2016. "Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235754, Agricultural and Applied Economics Association.
    15. Eric Yanchenko & Howard D. Bondell & Brian J. Reich, 2024. "Spatial regression modeling via the R2D2 framework," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    16. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    17. Ren, Cuirong & Sun, Dongchu, 2014. "Objective Bayesian analysis for autoregressive models with nugget effects," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 260-280.
    18. Tu, Shiyi & Wang, Min & Sun, Xiaoqian, 2016. "Bayesian analysis of two-piece location–scale models under reference priors with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 133-144.
    19. Andrianakis, Ioannis & Challenor, Peter G., 2012. "The effect of the nugget on Gaussian process emulators of computer models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4215-4228.
    20. Sun, Xiaoqian & He, Zhuoqiong & Kabrick, John, 2008. "Bayesian spatial prediction of the site index in the study of the Missouri Ozark Forest Ecosystem Project," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3749-3764, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1528-1544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.