IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v162y2021ics0167947321000980.html
   My bibliography  Save this article

Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects

Author

Listed:
  • Ferreira, Marco A.R.
  • Porter, Erica M.
  • Franck, Christopher T.

Abstract

Fast algorithms are developed for Bayesian analysis of Gaussian hierarchical models with intrinsic conditional autoregressive (ICAR) spatial random effects. To achieve computational speed-ups, first a result is proved on the equivalence between the use of an improper CAR prior with centering on the fly and the use of a sum-zero constrained ICAR prior. This equivalence result then provides the key insight for the algorithms, which are based on rewriting the hierarchical model in the spectral domain. The two novel algorithms are the Spectral Gibbs Sampler (SGS) and the Spectral Posterior Maximizer (SPM). Both algorithms are based on one single matrix spectral decomposition computation. After this computation, the SGS and SPM algorithms scale linearly with the sample size. The SGS algorithm is preferable for smaller sample sizes, whereas the SPM algorithm is preferable for sample sizes large enough for asymptotic calculations to provide good approximations. Because the matrix spectral decomposition needs to be computed only once, the SPM algorithm has computational advantages over algorithms based on sparse matrix factorizations (which need to be computed for each value of the random effects variance parameter) in situations when many models need to be fitted. Three simulation studies are performed: the first simulation study shows improved performance in computational speed in estimation of the SGS algorithm compared to an algorithm that uses the spectral decomposition of the precision matrix; the second simulation study shows that for model selection computations with 10 regressors and sample sizes varying from 49 to 3600, when compared to the current fastest state-of-the-art algorithm implemented in the R package INLA, SPM computations are 550 to 1825 times faster; the third simulation study shows that, when compared to default INLA settings, SGS and SPM combined with reference priors provide much more adequate uncertainty quantification. Finally, the application of the novel SGS and SPM algorithms is illustrated with a spatial regression study of county-level median household income for 3108 counties in the contiguous United States in 2017.

Suggested Citation

  • Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:csdana:v:162:y:2021:i:c:s0167947321000980
    DOI: 10.1016/j.csda.2021.107264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321000980
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferreira, Marco A.R. & De Oliveira, Victor, 2007. "Bayesian reference analysis for Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 789-812, April.
    2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    3. Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
    4. Lee, Duncan, 2013. "CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i13).
    5. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    6. James S. Hodges & Bradley P. Carlin & Qiao Fan, 2003. "On the Precision of the Conditionally Autoregressive Prior in Spatial Models," Biometrics, The International Biometric Society, vol. 59(2), pages 317-322, June.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    8. Ciprian M. Crainiceanu & David Ruppert, 2004. "Likelihood ratio tests in linear mixed models with one variance component," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 165-185, February.
    9. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    10. Bradley Efron, 2015. "Frequentist accuracy of Bayesian estimates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 617-646, June.
    11. Michael L. Lavine & James S. Hodges, 2012. "On Rigorous Specification of ICAR Models," The American Statistician, Taylor & Francis Journals, vol. 66(1), pages 42-49, February.
    12. Victor De Oliveira & Marco Ferreira, 2011. "Maximum likelihood and restricted maximum likelihood estimation for a class of Gaussian Markov random fields," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 167-183, September.
    13. Thaís C. O. Fonseca & Marco A. R. Ferreira & Helio S. Migon, 2008. "Objective Bayesian analysis for the Student-t regression model," Biometrika, Biometrika Trust, vol. 95(2), pages 325-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuangshuang Xu & Marco A. R. Ferreira & Erica M. Porter & Christopher T. Franck, 2023. "Bayesian model selection for generalized linear mixed models," Biometrics, The International Biometric Society, vol. 79(4), pages 3266-3278, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    2. Ropo E. Ogunsakin & Themba G. Ginindza, 2022. "Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey," IJERPH, MDPI, vol. 19(15), pages 1-17, July.
    3. Luca Grassetti & Laura Rizzi, 2019. "The determinants of individual health care expenditures in the Italian region of Friuli Venezia Giulia: evidence from a hierarchical spatial model estimation," Empirical Economics, Springer, vol. 56(3), pages 987-1009, March.
    4. Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.
    5. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    6. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    7. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    8. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    9. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    10. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    11. Brian J. Reich & James S. Hodges, 2008. "Modeling Longitudinal Spatial Periodontal Data: A Spatially Adaptive Model with Tools for Specifying Priors and Checking Fit," Biometrics, The International Biometric Society, vol. 64(3), pages 790-799, September.
    12. Faustin Habyarimana & Temesgen Zewotir & Shaun Ramroop, 2017. "Structured Additive Quantile Regression for Assessing the Determinants of Childhood Anemia in Rwanda," IJERPH, MDPI, vol. 14(6), pages 1-15, June.
    13. Medina-Olivares, Victor & Calabrese, Raffaella & Dong, Yizhe & Shi, Baofeng, 2022. "Spatial dependence in microfinance credit default," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1071-1085.
    14. Matthew Yap & Matthew Tuson & Berwin Turlach & Bryan Boruff & David Whyatt, 2021. "Modelling the Relationship between Rainfall and Mental Health Using Different Spatial and Temporal Units," IJERPH, MDPI, vol. 18(3), pages 1-15, February.
    15. Susan M. Paddock & Terrance D. Savitsky, 2013. "Bayesian hierarchical semiparametric modelling of longitudinal post-treatment outcomes from open enrolment therapy groups," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 795-808, June.
    16. Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.
    17. Yang, Anni & Liu, Chenhui & Yang, Di & Lu, Chaoru, 2023. "Electric vehicle adoption in a mature market: A case study of Norway," Journal of Transport Geography, Elsevier, vol. 106(C).
    18. Panczak, Radoslaw & Moser, André & Held, Leonhard & Jones, Philip A. & Rühli, Frank J. & Staub, Kaspar, 2017. "A tall order: Small area mapping and modelling of adult height among Swiss male conscripts," Economics & Human Biology, Elsevier, vol. 26(C), pages 61-69.
    19. V. A. Alegana & C. Pezzulo & A. J. Tatem & B. Omar & A. Christensen, 2021. "Mapping out-of-school adolescents and youths in low- and middle-income countries," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-10, December.
    20. I. Gede Nyoman M. Jaya & Henk Folmer, 2021. "Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 849-881, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:162:y:2021:i:c:s0167947321000980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.