The slice sampler and centrally symmetric distributions
Author
Abstract
Suggested Citation
DOI: 10.1515/mcma-2024-2012
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Planas, Christophe & Rossi, Alessandro, 2018. "The slice sampler and centrally symmetric distributions," JRC Working Papers in Economics and Finance 2018-11, Joint Research Centre, European Commission.
References listed on IDEAS
- P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344, April.
- Harman, Radoslav & Lacko, Vladimír, 2010. "On decompositional algorithms for uniform sampling from n-spheres and n-balls," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2297-2304, November.
- Brendan Kline & Elie Tamer, 2016.
"Bayesian inference in a class of partially identified models,"
Quantitative Economics, Econometric Society, vol. 7(2), pages 329-366, July.
- Tamer, Elie & Kline, Brendan, 2016. "Bayesian inference in a class of partially identified models," Scholarly Articles 30780157, Harvard University Department of Economics.
- Li, Junye, 2011. "Volatility components, leverage effects, and the return-volatility relations," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1530-1540, June.
- Dunson, David B. & Xing, Chuanhua, 2009. "Nonparametric Bayes Modeling of Multivariate Categorical Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1042-1051.
- Leemis, Lawrence M. & McQueston, Jacquelyn T., 2008. "Univariate Distribution Relationships," The American Statistician, American Statistical Association, vol. 62, pages 45-53, February.
- Gareth O. Roberts & Jeffrey S. Rosenthal, 1999. "Convergence of Slice Sampler Markov Chains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 643-660.
- George S. Fishman, 1999. "An Analysis of Swendsen–Wang and Related Sampling Methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 623-641.
- Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
- Sudipto Banerjee, 2005. "On Geodetic Distance Computations in Spatial Modeling," Biometrics, The International Biometric Society, vol. 61(2), pages 617-625, June.
- Antonietta Mira & Luke Tierney, 2002. "Efficiency and Convergence Properties of Slice Samplers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 1-12, March.
- Yang, Zhenlin, 2006. "A modified family of power transformations," Economics Letters, Elsevier, vol. 92(1), pages 14-19, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Yanxin & Walker, Stephen G., 2023. "A latent slice sampling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Chib, Siddhartha, 2004. "Markov Chain Monte Carlo Technology," Papers 2004,22, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Zhongxian Men & Adam W. Kolkiewicz & Tony S. Wirjanto, 2019. "Threshold Stochastic Conditional Duration Model for Financial Transaction Data," JRFM, MDPI, vol. 12(2), pages 1-21, May.
- Majid Khaledi & Firoozeh Rivaz, 2009. "Empirical Bayes spatial prediction using a Monte Carlo EM algorithm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 35-47, March.
- Ghosal, Rahul & Ghosh, Sujit K., 2022. "Bayesian inference for generalized linear model with linear inequality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
- Minjung Kyung & Jeff Gill & George Casella, 2011. "Sampling schemes for generalized linear Dirichlet process random effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(3), pages 259-290, August.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
- Antonietta Mira & Daniel J. Sargent, 2003. "A new strategy for speeding Markov chain Monte Carlo algorithms," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 49-60, February.
- Norets, Andriy & Shimizu, Kenichi, 2024.
"Semiparametric Bayesian estimation of dynamic discrete choice models,"
Journal of Econometrics, Elsevier, vol. 238(2).
- Andriy Norets & Kenichi Shimizu, 2022. "Semiparametric Bayesian Estimation of Dynamic Discrete Choice Models," Papers 2202.04339, arXiv.org, revised Aug 2023.
- Andriy Norets & Kenichi Shimizu, 2022. "Semiparametric Bayesian Estimation of Dynamic Discrete Choice Models," Working Papers 2022_06, Business School - Economics, University of Glasgow.
- Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
- Jean-Pierre Florens & Anna Simoni, 2021.
"Revisiting Identification Concepts in Bayesian Analysis,"
Annals of Economics and Statistics, GENES, issue 144, pages 1-38.
- Jean-Pierre Florens & Anna Simoni, 2021. "Revisiting identification concepts in Bayesian analysis," Papers 2110.09954, arXiv.org.
- Jean-Pierre Florens & Anna Simoni, 2021. "Revisiting Identification Concepts in Bayesian Analysis," Post-Print hal-03504692, HAL.
- Wolf-Dieter Richter, 2019. "On (p1,…,pk)-spherical distributions," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-18, December.
- Johnson, Alicia A. & Jones, Galin L., 2015. "Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 325-342.
- Stephen G. Walker, 2006. "Sampling the Dirichlet Mixture Model with Slices," ICER Working Papers - Applied Mathematics Series 16-2006, ICER - International Centre for Economic Research.
- Kunihama, T. & Herring, A.H. & Halpern, C.T. & Dunson, D.B., 2016. "Nonparametric Bayes modeling with sample survey weights," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 41-48.
- Vladimir Hlasny, 2021.
"Parametric representation of the top of income distributions: Options, historical evidence, and model selection,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
- Vladimir Hlasny, 2020. "Parametric Representation of the Top of Income Distributions: Options, Historical Evidence and Model Selection," Working Papers 547, ECINEQ, Society for the Study of Economic Inequality.
- Vladimir Hlasny, 2020. "Parametric Representation of the Top of Income Distributions: Options, Historical Evidence and Model Selection," Commitment to Equity (CEQ) Working Paper Series 90, Tulane University, Department of Economics.
- Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019.
"Confidence Intervals for Projections of Partially Identified Parameters,"
Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
- Hiroaki Kaido & Francesca Molinari & Jorg Stoye, 2016. "Confidence Intervals for Projections of Partially Identified Parameters," Papers 1601.00934, arXiv.org, revised Jun 2019.
- Stoye, Joerg & Kaido, Hiroaki & Molinari, Francesca, 2016. "Confidence Intervals for Projections of Partially Identified Parameters," VfS Annual Conference 2016 (Augsburg): Demographic Change 145485, Verein für Socialpolitik / German Economic Association.
- Hiroaki Kaido & Francesca Molinari & Jorg Stoye, 2017. "Confidence intervals for projections of partially identified parameters," CeMMAP working papers 49/17, Institute for Fiscal Studies.
- Hiroaki Kaido & Francesca Molinari & Jorg Stoye, 2016. "Confidence intervals for projections of partially identified parameters," CeMMAP working papers CWP02/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hiroaki Kaido & Francesca Molinari & Jorg Stoye, 2019. "Confi dence Intervals for Projections of Partially Identifi ed Parameters," CeMMAP working papers CWP26/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hiroaki Kaido & Francesca Molinari & Jorg Stoye, 2016. "Confi dence Intervals for Projections of Partially Identi fied Parameters," Boston University - Department of Economics - Working Papers Series wp2016-001, Boston University - Department of Economics.
- Hiroaki Kaido & Francesca Molinari & Jorg Stoye, 2017. "Confidence intervals for projections of partially identified parameters," CeMMAP working papers CWP49/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2016. "Confidence intervals for projections of partially identified parameters," CeMMAP working papers 02/16, Institute for Fiscal Studies.
- Park, Eunchun & Brorsen, B. Wade & Harri, Ardian, 2016. "Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235754, Agricultural and Applied Economics Association.
- Mahsa Samsami & Ralf Wagner, 2021. "Investment Decisions with Endogeneity: A Dirichlet Tree Analysis," JRFM, MDPI, vol. 14(7), pages 1-19, July.
More about this item
Keywords
Markov chain Monte Carlo; multivariate sampling; inefficiency factor;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:30:y:2024:i:3:p:299-313:n:1007. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.