IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v23y2018i2d10.1007_s13253-018-0318-9.html
   My bibliography  Save this article

Using a Bayesian Hierarchical Linear Mixing Model to Estimate Botanical Mixtures

Author

Listed:
  • Napoleón Vargas Jurado

    (University of Nebraska–Lincoln
    University of Nebraska–Lincoln)

  • Kent M. Eskridge

    (University of Nebraska–Lincoln)

  • Stephen D. Kachman

    (University of Nebraska–Lincoln)

  • Ronald M. Lewis

    (University of Nebraska–Lincoln)

Abstract

In grazing systems, estimating the dietary choices of animals is challenging but can be achieved using plant-wax markers, natural compounds that provide a signature of individual plants. If sufficiently distinct, these signatures can be used to characterize the makeup of a botanical mixture or diet. Bayesian hierarchical models for linear unmixing (BHLU) have been widely used for hyperspectral image analysis and geochemistry, but not diet mixtures. The aim of this study was to assess the efficiency of BHLU to estimate botanical mixtures. Plant-wax marker concentrations from eight forages found in Nebraska were used for simulating combinations of two, three, five and eight species. Also, actual forage mixtures were constructed in laboratory and evaluated. Analyses were performed using BHLU with 2 prior choices for forage proportions (uniform and Gaussian), 2 covariance structures (independent and correlated markers), stable isotope mixing models (SIMM), and nonnegative least squares (NNLS). Accounting for correlations between markers increased efficiency. Estimation error increased when Gaussian priors were used to model forage proportions. Performance of BHLU, SIMM, and NNLS was reduced with the more complex botanical mixtures and the limited number of markers. For simple mixtures, BHLU is a reliable alternative to NNLS for estimation of forage proportions. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Napoleón Vargas Jurado & Kent M. Eskridge & Stephen D. Kachman & Ronald M. Lewis, 2018. "Using a Bayesian Hierarchical Linear Mixing Model to Estimate Botanical Mixtures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 190-207, June.
  • Handle: RePEc:spr:jagbes:v:23:y:2018:i:2:d:10.1007_s13253-018-0318-9
    DOI: 10.1007/s13253-018-0318-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-018-0318-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-018-0318-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew C. Parnell & Donald L. Phillips & Stuart Bearhop & Brice X. Semmens & Eric J. Ward & Jonathan W. Moore & Andrew L. Jackson & Jonathan Grey & David J. Kelly & Richard Inger, 2013. "Bayesian stable isotope mixing models," Environmetrics, John Wiley & Sons, Ltd., vol. 24(6), pages 387-399, September.
    2. J. L. Scealy & A. H. Welsh, 2011. "Regression for compositional data by using distributions defined on the hypersphere," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 351-375, June.
    3. Hannes Kazianka & Michael Mulyk & Jürgen Pilz, 2011. "A Bayesian approach to estimating linear mixtures with unknown covariance structure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1801-1817, September.
    4. Eddelbuettel, Dirk & Sanderson, Conrad, 2014. "RcppArmadillo: Accelerating R with high-performance C++ linear algebra," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1054-1063.
    5. repec:dau:papers:123456789/11431 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongyun Zhang & Min Gao & Xi Sun & Baoling Liang & Cuizhi Sun & Qibin Sun & Xue Ni & Hengjia Ou & Shixin Mai & Shengzhen Zhou & Jun Zhao, 2024. "The Isotopic Characteristics, Sources, and Formation Pathways of Atmospheric Sulfate and Nitrate in the South China Sea," Sustainability, MDPI, vol. 16(20), pages 1-18, October.
    2. Etienne Côme & Nicolas Jouvin & Pierre Latouche & Charles Bouveyron, 2021. "Hierarchical clustering with discrete latent variable models and the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 957-986, December.
    3. Aaron T L Lun & Hervé Pagès & Mike L Smith, 2018. "beachmat: A Bioconductor C++ API for accessing high-throughput biological data from a variety of R matrix types," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-15, May.
    4. Huan Zhang & Yuyu Wang & Jun Xu, 2023. "Influence of Seasonal Water Level Fluctuations on Food Web Structure of a Large Floodplain Lake in China," Sustainability, MDPI, vol. 15(13), pages 1-12, July.
    5. Zhu, Changbo & Müller, Hans-Georg, 2024. "Spherical autoregressive models, with application to distributional and compositional time series," Journal of Econometrics, Elsevier, vol. 239(2).
    6. Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.
    7. Helmut Lutkepohl & Fei Shang & Luis Uzeda & Tomasz Wo'zniak, 2024. "Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference," Papers 2404.11057, arXiv.org.
    8. Morais, Joanna & Simioni, Michel & Thomas-Agnan, Christine, 2016. "A tour of regression models for explaining shares," TSE Working Papers 16-742, Toulouse School of Economics (TSE).
    9. Takahiro Yoshida & Morito Tsutsumi, 2018. "On the effects of spatial relationships in spatial compositional multivariate models," Letters in Spatial and Resource Sciences, Springer, vol. 11(1), pages 57-70, March.
    10. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    11. Cardona Jiménez, Johnatan & de B. Pereira, Carlos A., 2021. "Assessing dynamic effects on a Bayesian matrix-variate dynamic linear model: An application to task-based fMRI data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    12. Kristoffer H. Hellton, 2023. "Penalized angular regression for personalized predictions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 184-212, March.
    13. Wang, Zhong-Jun & Yue, Fu-Jun & Wang, Yu-Chun & Qin, Cai-Qing & Ding, Hu & Xue, Li-Li & Li, Si-Liang, 2022. "The effect of heavy rainfall events on nitrogen patterns in agricultural surface and underground streams and the implications for karst water quality protection," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Lu Chen & Balgobin Nandram, 2023. "Bayesian Logistic Regression Model for Sub-Areas," Stats, MDPI, vol. 6(1), pages 1-23, January.
    15. Jos'e Vin'icius de Miranda Cardoso & Jiaxi Ying & Daniel Perez Palomar, 2020. "Algorithms for Learning Graphs in Financial Markets," Papers 2012.15410, arXiv.org.
    16. Wu, Junen & Zeng, Huanhuan & Chen, Chunfeng & Liu, Wenjie, 2019. "Can intercropping with the Chinese medicinal herbs change the water use of the aged rubber trees?," Agricultural Water Management, Elsevier, vol. 226(C).
    17. Batarce, Marco, 2024. "Estimation of discrete choice models with error in variables: An application to revealed preference data with aggregate service level variables," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    18. Maximilian Böck & Martin Feldkircher & Florian Huber, 2020. "BGVAR: Bayesian Global Vector Autoregressions with Shrinkage Priors in R," Globalization Institute Working Papers 395, Federal Reserve Bank of Dallas.
    19. Shen, Yunyi & Olson, Erik R. & Van Deelen, Timothy R., 2021. "Spatially explicit modeling of community occupancy using Markov Random Field models with imperfect observation: Mesocarnivores in Apostle Islands National Lakeshore," Ecological Modelling, Elsevier, vol. 459(C).
    20. Zhe Yu & Raquel Prado & Erin Burke Quinlan & Steven C. Cramer & Hernando Ombao, 2016. "Understanding the Impact of Stroke on Brain Motor Function: A Hierarchical Bayesian Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 549-563, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:23:y:2018:i:2:d:10.1007_s13253-018-0318-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.