IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i10p2830-2839.html
   My bibliography  Save this article

Objective Bayesian analysis of accelerated competing failure models under Type-I censoring

Author

Listed:
  • Xu, Ancha
  • Tang, Yincai

Abstract

This paper discusses the Bayesian inference of accelerated life tests (ALT) in the presence of competing failure causes. The time to failure due to a specific cause is described by a Weibull distribution. A two-stage approach is utilized to obtain the estimates of parameters in the model. We use the Bayesian method to estimate the parameters of the distribution of component lifetimes in the first stage, in which two noninformative priors (Jeffreys prior and reference prior) are derived in the case of ALT, and based on these two priors we present the Gibbs sampling procedures to obtain the posterior estimates of the parameters. Besides, to overcome the problem of improper posterior densities under some conditions, we modify the likelihood function to make the posterior densities proper. In the second stage, parameters in the accelerating function are obtained by least squares approach. A numerical example is given to show the effectiveness of the method and a real data from Nelson (1990) is analyzed.

Suggested Citation

  • Xu, Ancha & Tang, Yincai, 2011. "Objective Bayesian analysis of accelerated competing failure models under Type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2830-2839, October.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:10:p:2830-2839
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311001381
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herbert Hove & Frank Beichelt & Parmod K. Kapur, 2017. "Estimation of the Frank copula model for dependent competing risks in accelerated life testing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 673-682, December.
    2. Guan, Qiang & Tang, Yincai & Xu, Ancha, 2013. "Objective Bayesian analysis for bivariate Marshall–Olkin exponential distribution," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 299-313.
    3. Liudong Xing & Chaonan Wang & Gregory Levitin, 2012. "Competing failure analysis in non-repairable binary systems subject to functional dependence," Journal of Risk and Reliability, , vol. 226(4), pages 406-416, August.
    4. Kazianka, Hannes, 2012. "Objective Bayesian analysis for the normal compositional model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1528-1544.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, W. K. & Yang, Z. H. & Hou, S. H. & Leung, P. K., 2002. "Non-uniform random variate generation by the vertical strip method," European Journal of Operational Research, Elsevier, vol. 142(3), pages 595-609, November.
    2. Z. Rezaei Ghahroodi & M. Ganjali, 2013. "A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1425-1445, July.
    3. Anis Fradi & Chafik Samir & Ines Adouani, 2024. "A New Bayesian Approach to Global Optimization on Parametrized Surfaces in $$\mathbb {R}^{3}$$ R 3," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1077-1100, September.
    4. Antonello Loddo & Shawn Ni & Dongchu Sun, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
    5. Nandram, Balgobin & Zelterman, Daniel, 2007. "Computational Bayesian inference for estimating the size of a finite population," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2934-2945, March.
    6. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
    7. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    8. Hattam, Caroline & Holloway, Garth J., 2007. "Bayes Estimates of Time to Organic Certification," 81st Annual Conference, April 2-4, 2007, Reading University, UK 7979, Agricultural Economics Society.
    9. Peter F. Thall & Lurdes Y. T. Inoue & Thomas G. Martin, 2002. "Adaptive Decision Making in a Lymphocyte Infusion Trial," Biometrics, The International Biometric Society, vol. 58(3), pages 560-568, September.
    10. M. Ghosh & B. Carlin & M. Srivastava, 1995. "Probability matching priors for linear calibration," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(2), pages 333-357, December.
    11. Pang, Wan Kai & Yu, Bosco Wing-Tong & Troutt, Marvin D. & Hou, Shui Hung, 2008. "A simulation-based approach to the study of coefficient of variation of dividend yields," European Journal of Operational Research, Elsevier, vol. 189(2), pages 559-569, September.
    12. Mike G. Tsionas, 2023. "Linex and double-linex regression for parameter estimation and forecasting," Annals of Operations Research, Springer, vol. 323(1), pages 229-245, April.
    13. Chong Z. He & Dongchu Sun & Yolande Tra, 2001. "Bayesian Modeling of Age-Specific Survival in Nesting Studies Under Dirichlet Priors," Biometrics, The International Biometric Society, vol. 57(4), pages 1059-1066, December.
    14. Willy Alanya & Gabriel Rodríguez, 2018. "Stochastic Volatility in the Peruvian Stock Market and Exchange Rate Returns: A Bayesian Approximation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 354-385, December.
    15. Amy H. Herring & Joseph G. Ibrahim & Stuart R. Lipsitz, 2002. "Frailty Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 58(1), pages 98-109, March.
    16. Satyanshu Kumar Upadhyay & Iftikhar Ahmed Javed & Meena Peshwani, 2004. "Bayesian analysis of generalized four-parameter Burr distribution via Gibbs sampler," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 115-135.
    17. Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Dennis Matanda & Otibho Obianwu & Ngianga-Bakwin Kandala, 2021. "Evaluating changes in the prevalence of female genital mutilation/cutting among 0-14 years old girls in Nigeria using data from multiple surveys: A novel Bayesian hierarchical spatio-temporal model," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-31, February.
    18. Jason R. W. Merrick, 2008. "Getting the Right Mix of Experts," Decision Analysis, INFORMS, vol. 5(1), pages 43-52, March.
    19. Naijun Sha & Rong Pan, 2014. "Bayesian analysis for step-stress accelerated life testing using weibull proportional hazard model," Statistical Papers, Springer, vol. 55(3), pages 715-726, August.
    20. Kim Jin Gyo & Menzefricke Ulrich & Feinberg Fred M., 2004. "Assessing Heterogeneity in Discrete Choice Models Using a Dirichlet Process Prior," Review of Marketing Science, De Gruyter, vol. 2(1), pages 1-41, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:10:p:2830-2839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.