IDEAS home Printed from https://ideas.repec.org/p/jrs/wpaper/201811.html
   My bibliography  Save this paper

The slice sampler and centrally symmetric distributions

Author

Abstract

We point out that the simple slice sampler generates chains that are correlation-free when the target distribution is centrally symmetric. This property explains several results in the literature about the relative performance of the simple and product slice samplers. We exploit it to improve two algorithms often used to circumvent the slice inversion problem, namely stepping out and multivariate sampling with hyperrectangles. In the general asymmetric case, we argue that symmetrizing the target distribution before simulating greatly enhances the efficiency of the simple slice sampler. To achieve symmetry we focus on the Box-Cox transformation with parameters chosen to minimize a measure of skewness. This strategy is illustrated with several sampling problems.

Suggested Citation

  • Planas, Christophe & Rossi, Alessandro, 2018. "The slice sampler and centrally symmetric distributions," JRC Working Papers in Economics and Finance 2018-11, Joint Research Centre, European Commission.
  • Handle: RePEc:jrs:wpaper:201811
    as

    Download full text from publisher

    File URL: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC113316/jrc113316_jrcwp2018-11.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gareth O. Roberts & Jeffrey S. Rosenthal, 1999. "Convergence of Slice Sampler Markov Chains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 643-660.
    2. Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
    3. Sudipto Banerjee, 2005. "On Geodetic Distance Computations in Spatial Modeling," Biometrics, The International Biometric Society, vol. 61(2), pages 617-625, June.
    4. Antonietta Mira & Luke Tierney, 2002. "Efficiency and Convergence Properties of Slice Samplers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 1-12, March.
    5. Yang, Zhenlin, 2006. "A modified family of power transformations," Economics Letters, Elsevier, vol. 92(1), pages 14-19, July.
    6. P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344, April.
    7. Harman, Radoslav & Lacko, Vladimír, 2010. "On decompositional algorithms for uniform sampling from n-spheres and n-balls," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2297-2304, November.
    8. Brendan Kline & Elie Tamer, 2016. "Bayesian inference in a class of partially identified models," Quantitative Economics, Econometric Society, vol. 7(2), pages 329-366, July.
    9. Li, Junye, 2011. "Volatility components, leverage effects, and the return-volatility relations," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1530-1540, June.
    10. Dunson, David B. & Xing, Chuanhua, 2009. "Nonparametric Bayes Modeling of Multivariate Categorical Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1042-1051.
    11. Leemis, Lawrence M. & McQueston, Jacquelyn T., 2008. "Univariate Distribution Relationships," The American Statistician, American Statistical Association, vol. 62, pages 45-53, February.
    12. George S. Fishman, 1999. "An Analysis of Swendsen–Wang and Related Sampling Methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 623-641.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanxin & Walker, Stephen G., 2023. "A latent slice sampling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    2. Chib, Siddhartha, 2004. "Markov Chain Monte Carlo Technology," Papers 2004,22, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    3. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    4. Zhongxian Men & Adam W. Kolkiewicz & Tony S. Wirjanto, 2019. "Threshold Stochastic Conditional Duration Model for Financial Transaction Data," JRFM, MDPI, vol. 12(2), pages 1-21, May.
    5. Majid Khaledi & Firoozeh Rivaz, 2009. "Empirical Bayes spatial prediction using a Monte Carlo EM algorithm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 35-47, March.
    6. Ghosal, Rahul & Ghosh, Sujit K., 2022. "Bayesian inference for generalized linear model with linear inequality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    7. Anagh Chattopadhyay & Soudeep Deb, 2024. "A spatio-temporal model for binary data and its application in analyzing the direction of COVID-19 spread," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(4), pages 823-851, December.
    8. Minjung Kyung & Jeff Gill & George Casella, 2011. "Sampling schemes for generalized linear Dirichlet process random effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(3), pages 259-290, August.
    9. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    10. Antonietta Mira & Daniel J. Sargent, 2003. "A new strategy for speeding Markov chain Monte Carlo algorithms," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 49-60, February.
    11. Norets, Andriy & Shimizu, Kenichi, 2024. "Semiparametric Bayesian estimation of dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 238(2).
    12. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    13. Jean-Pierre Florens & Anna Simoni, 2021. "Revisiting Identification Concepts in Bayesian Analysis," Annals of Economics and Statistics, GENES, issue 144, pages 1-38.
    14. Wolf-Dieter Richter, 2019. "On (p1,…,pk)-spherical distributions," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-18, December.
    15. Johnson, Alicia A. & Jones, Galin L., 2015. "Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 325-342.
    16. Stephen G. Walker, 2006. "Sampling the Dirichlet Mixture Model with Slices," ICER Working Papers - Applied Mathematics Series 16-2006, ICER - International Centre for Economic Research.
    17. Kunihama, T. & Herring, A.H. & Halpern, C.T. & Dunson, D.B., 2016. "Nonparametric Bayes modeling with sample survey weights," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 41-48.
    18. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    19. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    20. Park, Eunchun & Brorsen, B. Wade & Harri, Ardian, 2016. "Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235754, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Box-Cox transformation; Markov Chain Monte Carlo; multivariate sampling;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jrs:wpaper:201811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Benczur (email available below). General contact details of provider: https://edirc.repec.org/data/ipjrces.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.