IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i1p296-326.html
   My bibliography  Save this article

Approximate reference priors for Gaussian random fields

Author

Listed:
  • Victor De Oliveira
  • Zifei Han

Abstract

Reference priors are theoretically attractive for the analysis of geostatistical data since they enable automatic Bayesian analysis and have desirable Bayesian and frequentist properties. But their use is hindered by computational hurdles that make their application in practice challenging. In this work, we derive a new class of default priors that approximate reference priors for the parameters of some Gaussian random fields. It is based on an approximation to the integrated likelihood of the covariance parameters derived from the spectral approximation of stationary random fields. This prior depends on the structure of the mean function and the spectral density of the model evaluated at a set of spectral points associated with an auxiliary regular grid. In addition to preserving the desirable Bayesian and frequentist properties, these approximate reference priors are more stable, and their computations are much less onerous than those of exact reference priors. Unlike exact reference priors, the marginal approximate reference prior of correlation parameter is always proper, regardless of the mean function or the smoothness of the correlation function. This property has important consequences for covariance model selection. An illustration comparing default Bayesian analyses is provided with a dataset of lead pollution in Galicia, Spain.

Suggested Citation

  • Victor De Oliveira & Zifei Han, 2023. "Approximate reference priors for Gaussian random fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 296-326, March.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:1:p:296-326
    DOI: 10.1111/sjos.12577
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12577
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paciorek, Christopher J., 2007. "Bayesian Smoothing with Gaussian Processes Using Fourier Basis Functions in the spectralGP Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i02).
    2. Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
    3. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    4. Bachoc, François, 2014. "Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 1-35.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    2. François Bachoc & Marc G Genton & Klaus Nordhausen & Anne Ruiz-Gazen & Joni Virta, 2020. "Spatial blind source separation," Biometrika, Biometrika Trust, vol. 107(3), pages 627-646.
    3. Park, Eunchun & Brorsen, B. Wade & Harri, Ardian, 2016. "Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235754, Agricultural and Applied Economics Association.
    4. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    5. Eric Yanchenko & Howard D. Bondell & Brian J. Reich, 2024. "Spatial regression modeling via the R2D2 framework," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    6. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
    7. Olivier Parent & James P. LeSage, 2008. "Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 235-256.
    8. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    9. Ren, Cuirong & Sun, Dongchu, 2014. "Objective Bayesian analysis for autoregressive models with nugget effects," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 260-280.
    10. Tu, Shiyi & Wang, Min & Sun, Xiaoqian, 2016. "Bayesian analysis of two-piece location–scale models under reference priors with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 133-144.
    11. Gunnar Taraldsen & Jarle Tufto & Bo H. Lindqvist, 2022. "Improper priors and improper posteriors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 969-991, September.
    12. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    13. Victor De Oliveira & Zifei Han, 2022. "On Information About Covariance Parameters in Gaussian Matérn Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 690-712, December.
    14. Lucia Paci & Alan E. Gelfand & and María Asunción Beamonte & Pilar Gargallo & Manuel Salvador, 2020. "Spatial hedonic modelling adjusted for preferential sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 169-192, January.
    15. Cuirong Ren & Dongchu Sun, 2013. "Objective Bayesian analysis for CAR models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 457-472, June.
    16. Ferreira, Marco A.R. & De Oliveira, Victor, 2007. "Bayesian reference analysis for Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 789-812, April.
    17. Anyosa, Susan & Eidsvik, Jo & Pizarro, Oscar, 2023. "Adaptive spatial designs minimizing the integrated Bernoulli variance in spatial logistic regression models - with an application to benthic habitat mapping," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    18. Brian Conroy & Lance A. Waller & Ian D. Buller & Gregory M. Hacker & James R. Tucker & Mark G. Novak, 2023. "A Shared Latent Process Model to Correct for Preferential Sampling in Disease Surveillance Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 483-501, September.
    19. Andrianakis, Ioannis & Challenor, Peter G., 2012. "The effect of the nugget on Gaussian process emulators of computer models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4215-4228.
    20. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:1:p:296-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.