IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v65y2013i3p457-472.html
   My bibliography  Save this article

Objective Bayesian analysis for CAR models

Author

Listed:
  • Cuirong Ren
  • Dongchu Sun

Abstract

Objective priors, especially reference priors, have been studied extensively for spatial data in the last decade. In this paper, we study objective priors for a CAR model. In particular, the properties of the reference prior and the corresponding posterior are studied. Furthermore, we show that the frequentist coverage probabilities of posterior credible intervals depend only on the spatial dependence parameter $$\rho $$ , and not on the regression coefficient or the error variance. Based on the simulation study for comparing the reference and Jeffreys priors, the performance of two reference priors is similar and better than the Jeffreys priors. One spatial dataset is used for illustration. Copyright The Institute of Statistical Mathematics, Tokyo 2013

Suggested Citation

  • Cuirong Ren & Dongchu Sun, 2013. "Objective Bayesian analysis for CAR models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 457-472, June.
  • Handle: RePEc:spr:aistmt:v:65:y:2013:i:3:p:457-472
    DOI: 10.1007/s10463-012-0377-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-012-0377-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-012-0377-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
    2. Victor Oliveira, 2012. "Bayesian analysis of conditional autoregressive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 107-133, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Cuirong & Sun, Dongchu, 2014. "Objective Bayesian analysis for autoregressive models with nugget effects," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 260-280.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Cuirong & Sun, Dongchu, 2014. "Objective Bayesian analysis for autoregressive models with nugget effects," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 260-280.
    2. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    3. Park, Eunchun & Brorsen, B. Wade & Harri, Ardian, 2016. "Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235754, Agricultural and Applied Economics Association.
    4. Eric Yanchenko & Howard D. Bondell & Brian J. Reich, 2024. "Spatial regression modeling via the R2D2 framework," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    5. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    6. Olivier Parent & James P. LeSage, 2008. "Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 235-256.
    7. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    8. Tu, Shiyi & Wang, Min & Sun, Xiaoqian, 2016. "Bayesian analysis of two-piece location–scale models under reference priors with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 133-144.
    9. Gunnar Taraldsen & Jarle Tufto & Bo H. Lindqvist, 2022. "Improper priors and improper posteriors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 969-991, September.
    10. Ferreira, Marco A.R. & De Oliveira, Victor, 2007. "Bayesian reference analysis for Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 789-812, April.
    11. Andrianakis, Ioannis & Challenor, Peter G., 2012. "The effect of the nugget on Gaussian process emulators of computer models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4215-4228.
    12. Haigang Liu & David B. Hitchcock & S. Zahra Samadi, 2020. "Spatio-temporal analysis of flood data from South Carolina," Journal of Statistical Distributions and Applications, Springer, vol. 7(1), pages 1-19, December.
    13. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    14. Sun, Xiaoqian & He, Zhuoqiong & Kabrick, John, 2008. "Bayesian spatial prediction of the site index in the study of the Missouri Ozark Forest Ecosystem Project," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3749-3764, March.
    15. Majid Khaledi & Firoozeh Rivaz, 2009. "Empirical Bayes spatial prediction using a Monte Carlo EM algorithm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 35-47, March.
    16. Stefano F. Tonellato, 2005. "Identifiability Conditions for Spatio-Temporal Bayesian Dynamic Linear Models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 81-101.
    17. Planas Christophe & Rossi Alessandro, 2024. "The slice sampler and centrally symmetric distributions," Monte Carlo Methods and Applications, De Gruyter, vol. 30(3), pages 299-313.
    18. Getayeneh Antehunegn Tesema & Zemenu Tadesse Tessema & Stephane Heritier & Rob G. Stirling & Arul Earnest, 2023. "A Systematic Review of Joint Spatial and Spatiotemporal Models in Health Research," IJERPH, MDPI, vol. 20(7), pages 1-24, March.
    19. Victor De Oliveira & Zifei Han, 2023. "Approximate reference priors for Gaussian random fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 296-326, March.
    20. Hong-Ding Yang & Yun-Huan Lee & Che-Yang Lin, 2023. "On Study of the Occurrence of Earth-Size Planets in Kepler Mission Using Spatial Poisson Model," Mathematics, MDPI, vol. 11(11), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:65:y:2013:i:3:p:457-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.