IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923006768.html
   My bibliography  Save this article

Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments

Author

Listed:
  • Saha, Pritam
  • Mondal, Bapin
  • Ghosh, Uttam

Abstract

This manuscript deals with an epidemic model with partial immunity having nonlinear incidence and saturated treatment. Positivity and boundedness of the solutions have been established here. We discuss local stability of all equilibria. The proposed system experiences various types of bifurcations, namely Transcritical, Saddle–node, Hopf, and Bogdanov–Takens bifurcation of co-dimension 2. The system is reduced to a two-dimensional system using center manifold theorem to deduce normal form for Bogdanov–Takens bifurcation of co-dimension 2 when two eigenvalues at the endemic equilibrium point becomes zero. Whether deterministic model overestimates the condition for disease propagation, to observe this we also analysis stochastic model. We derive the condition for extinction, persistence in mean and stationary distribution. All theoretical findings are justified by numerical simulations. Finally, to check validity of the model, we fit it with real reported influenza data of Canada.

Suggested Citation

  • Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006768
    DOI: 10.1016/j.chaos.2023.113775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923006768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giovani L. Vasconcelos, 2004. "A Guided Walk Down Wall Street: an Introduction to Econophysics," Papers cond-mat/0408143, arXiv.org.
    2. Liu, Qun & Jiang, Daqing, 2023. "Stationary distribution and probability density for a stochastic SEIR-type model of coronavirus (COVID-19) with asymptomatic carriers," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Din, Anwarud & Khan, Amir & Baleanu, Dumitru, 2020. "Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Xie, Yingkang & Wang, Zhen, 2022. "A ratio-dependent impulsive control of an SIQS epidemic model with non-linear incidence," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    5. Han, Bingtao & Jiang, Daqing & Zhou, Baoquan & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2020. "Stochastic permanence of an epidemic model with a saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Rajasekar, S.P. & Pitchaimani, M., 2020. "Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    8. Mondal, Bapin & Ghosh, Uttam & Rahman, Md Sadikur & Saha, Pritam & Sarkar, Susmita, 2022. "Studies of different types of bifurcations analyses of an imprecise two species food chain model with fear effect and non-linear harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 111-135.
    9. Saha, Pritam & Sikdar, Gopal Chandra & Ghosh, Jayanta Kumar & Ghosh, Uttam, 2023. "Disease dynamics and optimal control strategies of a two serotypes dengue model with co-infection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 16-43.
    10. Settati, A. & Lahrouz, A. & Zahri, M. & Tridane, A. & El Fatini, M. & El Mahjour, H. & Seaid, M., 2021. "A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Zhou, Baoquan & Jiang, Daqing & Dai, Yucong & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Li, Jinhui & Teng, Zhidong & Wang, Guangqing & Zhang, Long & Hu, Cheng, 2017. "Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 63-71.
    13. Zhang, Xiao-Bing & Wang, Xiao-Dong & Huo, Hai-Feng, 2019. "Extinction and stationary distribution of a stochastic SIRS epidemic model with standard incidence rate and partial immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    2. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    3. Din, Anwarud & Li, Yongjin & Yusuf, Abdullahi, 2021. "Delayed hepatitis B epidemic model with stochastic analysis," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Yassine Sabbar & Asad Khan & Anwarud Din, 2022. "Probabilistic Analysis of a Marine Ecological System with Intense Variability," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    5. Rao, Feng & Kang, Yun, 2023. "Dynamics of a stochastic prey–predator system with prey refuge, predation fear and its carry-over effects," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. Han, Bingtao & Jiang, Daqing & Zhou, Baoquan & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Mu, Xiaojie & Jiang, Daqing, 2024. "Dynamics caused by the mean-reverting Ornstein–Uhlenbeck process in a stochastic predator–prey model with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    9. Zai-Yin He & Abderrahmane Abbes & Hadi Jahanshahi & Naif D. Alotaibi & Ye Wang, 2022. "Fractional-Order Discrete-Time SIR Epidemic Model with Vaccination: Chaos and Complexity," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    10. repec:hin:complx:9876013 is not listed on IDEAS
    11. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Nikolaos P. Rachaniotis & Thomas K. Dasaklis & Filippos Fotopoulos & Platon Tinios, 2021. "A Two-Phase Stochastic Dynamic Model for COVID-19 Mid-Term Policy Recommendations in Greece: A Pathway towards Mass Vaccination," IJERPH, MDPI, vol. 18(5), pages 1-21, March.
    13. Florin Turcaș & Florin Cornel Dumiter & Marius Boiță, 2022. "Econophysics Techniques and Their Applications on the Stock Market," Mathematics, MDPI, vol. 10(6), pages 1-25, March.
    14. Omame, Andrew & Abbas, Mujahid & Din, Anwarud, 2023. "Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model for dual variants of SARS-CoV-2," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 302-336.
    15. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    16. Rajasekar, S.P. & Pitchaimani, M. & Zhu, Quanxin, 2020. "Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    17. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    18. Domino, Krzysztof & Błachowicz, Tomasz, 2014. "The use of copula functions for modeling the risk of investment in shares traded on the Warsaw Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 77-85.
    19. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    20. Antonio Barrera & Patricia Román-Román & Francisco Torres-Ruiz, 2021. "T-Growth Stochastic Model: Simulation and Inference via Metaheuristic Algorithms," Mathematics, MDPI, vol. 9(9), pages 1-20, April.
    21. Majumdar, Prahlad & Mondal, Bapin & Debnath, Surajit & Ghosh, Uttam, 2022. "Controlling of periodicity and chaos in a three dimensional prey predator model introducing the memory effect," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.