IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v423y2022ics0096300322001047.html
   My bibliography  Save this article

A ratio-dependent impulsive control of an SIQS epidemic model with non-linear incidence

Author

Listed:
  • Xie, Yingkang
  • Wang, Zhen

Abstract

In this paper, the ratio-dependent impulsive control is used in an SIQS epidemic model with non-linear incidence. Compared with most of existing results, there are two advantages. On the one hand, the impulsive control strategy is economical, efficient and simple. On the other hand, the ratio-dependent impulsive control can deal with the changing population well. Besides, by using analogue of the Poincare criterion, vector field analysis, Poincare map and the method of qualitative analysis, the stability of the disease-free equilibrium and the existence and stability of positive order-k periodic solution of the SIQS epidemic model under ratio-dependent impulsive control are studied. Moreover, our results show that order-k (k>2) periodic solutions don’t exist. Finally, some simple numerical examples are used to verify our theoretical results.

Suggested Citation

  • Xie, Yingkang & Wang, Zhen, 2022. "A ratio-dependent impulsive control of an SIQS epidemic model with non-linear incidence," Applied Mathematics and Computation, Elsevier, vol. 423(C).
  • Handle: RePEc:eee:apmaco:v:423:y:2022:i:c:s0096300322001047
    DOI: 10.1016/j.amc.2022.127018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322001047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Guang Zhao & Chen, Lan Sun & Sun, Li Hua, 2005. "Complexity of an SIR epidemic dynamics model with impulsive vaccination control," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 495-505.
    2. Huang, He & Chen, Yahong & Yan, Zhijun, 2021. "Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    3. Rajasekar, S.P. & Pitchaimani, M., 2020. "Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    4. Gao, Shujing & Zhong, Deming & Zhang, Yan, 2018. "Analysis of novel stochastic switched SILI epidemic models with continuous and impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 162-171.
    5. Xie, Yingkang & Wang, Zhen & Lu, Junwei & Li, Yuxia, 2020. "Stability analysis and control strategies for a new SIS epidemic model in heterogeneous networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    6. Zaman, Gul & Kang, Yong Han & Cho, Giphil & Jung, Il Hyo, 2017. "Optimal strategy of vaccination & treatment in an SIR epidemic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 63-77.
    7. Rajasekar, S.P. & Pitchaimani, M. & Zhu, Quanxin, 2020. "Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wenjie & Ji, Jinchen & Huang, Lihong & Zhang, Ying, 2023. "Complex dynamics and impulsive control of a chemostat model under the ratio threshold policy," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Barrera & Patricia Román-Román & Francisco Torres-Ruiz, 2021. "Hyperbolastic Models from a Stochastic Differential Equation Point of View," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    2. Wang, Qi & Xiang, Kainan & Zhu, Chunhui & Zou, Lang, 2023. "Stochastic SEIR epidemic models with virus mutation and logistic growth of susceptible populations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 289-309.
    3. Shi, Zhenfeng & Jiang, Daqing & Zhang, Xinhong & Alsaedi, Ahmed, 2022. "A stochastic SEIRS rabies model with population dispersal: Stationary distribution and probability density function," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    4. Tingqiang Chen & Lei Wang & Jining Wang & Qi Yang, 2017. "A Network Diffusion Model of Food Safety Scare Behavior considering Information Transparency," Complexity, Hindawi, vol. 2017, pages 1-16, December.
    5. Rajasekar, S.P. & Pitchaimani, M., 2020. "Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    6. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    7. Omame, Andrew & Abbas, Mujahid & Din, Anwarud, 2023. "Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model for dual variants of SARS-CoV-2," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 302-336.
    8. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    9. Wang, Yuyao & Bu, Zhan & Yang, Huan & Li, Hui-Jia & Cao, Jie, 2021. "An effective and scalable overlapping community detection approach: Integrating social identity model and game theory," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    10. You, Xuemei & Zhang, Man & Ma, Yinghong & Tan, Jipeng & Liu, Zhiyuan, 2023. "Impact of higher-order interactions and individual emotional heterogeneity on information-disease coupled dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    11. Meng, Xinzhu & Jiao, Jianjun & Chen, Lansun, 2009. "Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2114-2125.
    12. Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Antonio Barrera & Patricia Román-Román & Francisco Torres-Ruiz, 2021. "T-Growth Stochastic Model: Simulation and Inference via Metaheuristic Algorithms," Mathematics, MDPI, vol. 9(9), pages 1-20, April.
    14. Gakkhar, Sunita & Negi, Kuldeep, 2008. "Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 626-638.
    15. Xingjie Wu & Wei Du & Genan Pan & Wentao Huang, 2013. "The dynamical behaviors of a Ivlev-type two-prey two-predator system with impulsive effect," Indian Journal of Pure and Applied Mathematics, Springer, vol. 44(1), pages 1-27, February.
    16. Liu, Qun & Jiang, Daqing, 2020. "Dynamical behavior of a higher order stochastically perturbed HIV/AIDS model with differential infectivity and amelioration," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    17. Rao, Xiao-Bo & Zhao, Xu-Ping & Chu, Yan-Dong & Zhang, Jian-Gang & Gao, Jian-She, 2020. "The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: Infinite cascade of Stern-Brocot sum trees," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    19. Imane Abouelkheir & Fadwa El Kihal & Mostafa Rachik & Ilias Elmouki, 2019. "Optimal Impulse Vaccination Approach for an SIR Control Model with Short-Term Immunity," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    20. Wen, Luosheng & Yang, Xiaofan, 2008. "Global stability of a delayed SIRS model with temporary immunity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 221-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:423:y:2022:i:c:s0096300322001047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.