IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v99y2017icp63-71.html
   My bibliography  Save this article

Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment

Author

Listed:
  • Li, Jinhui
  • Teng, Zhidong
  • Wang, Guangqing
  • Zhang, Long
  • Hu, Cheng

Abstract

In this paper, we introduce the saturated treatment and logistic growth rate into an SIR epidemic model with bilinear incidence. The treatment function is assumed to be a continuously differential function which describes the effect of delayed treatment when the medical condition is limited and the number of infected individuals is large enough. Sufficient conditions for the existence and local stability of the disease-free and positive equilibria are established. And the existence of the stable limit cycles also is obtained. Moreover, by using the theory of bifurcations, it is shown that the model exhibits backward bifurcation, Hopf bifurcation and Bogdanov–Takens bifurcations. Finally, the numerical examples are given to illustrate the theoretical results and obtain some additional interesting phenomena, involving double stable periodic solutions and stable limit cycles.

Suggested Citation

  • Li, Jinhui & Teng, Zhidong & Wang, Guangqing & Zhang, Long & Hu, Cheng, 2017. "Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 63-71.
  • Handle: RePEc:eee:chsofr:v:99:y:2017:i:c:p:63-71
    DOI: 10.1016/j.chaos.2017.03.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.03.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nudee, K. & Chinviriyasit, S. & Chinviriyasit, W., 2019. "The effect of backward bifurcation in controlling measles transmission by vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 400-412.
    2. Rajasekar, S.P. & Pitchaimani, M. & Zhu, Quanxin, 2020. "Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    3. repec:hin:complx:9876013 is not listed on IDEAS
    4. Das, Tanuja & Srivastava, Prashant K., 2023. "Effect of a novel generalized incidence rate function in SIR model: Stability switches and bifurcations," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    6. Xinyu Liu & Yuting Ding, 2022. "Stability and Numerical Simulations of a New SVIR Model with Two Delays on COVID-19 Booster Vaccination," Mathematics, MDPI, vol. 10(10), pages 1-27, May.
    7. Jia, Nan & Ding, Li & Liu, Yu-Jing & Hu, Ping, 2018. "Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 93-105.
    8. Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Han, Bingtao & Jiang, Daqing & Zhou, Baoquan & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Avila-Vales, Eric & Pérez, Ángel G.C., 2019. "Dynamics of a time-delayed SIR epidemic model with logistic growth and saturated treatment," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 55-69.
    12. Zhou, Weike & Zhao, Tingting & Wang, Aili & Tang, Sanyi, 2024. "Bifurcations and dynamics of a Filippov epidemic model with nonlinear threshold control policy and medical-resource constraints," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:99:y:2017:i:c:p:63-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.