IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v169y2023ics0960077923001571.html
   My bibliography  Save this article

Stationary distribution and probability density for a stochastic SEIR-type model of coronavirus (COVID-19) with asymptomatic carriers

Author

Listed:
  • Liu, Qun
  • Jiang, Daqing

Abstract

In this paper, we propose a stochastic SEIR-type model with asymptomatic carriers to describe the propagation mechanism of coronavirus (COVID-19) in the population. Firstly, we show that there exists a unique global positive solution of the stochastic system with any positive initial value. Then we adopt a stochastic Lyapunov function method to establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of positive solutions to the stochastic model. Especially, under the same conditions as the existence of a stationary distribution, we obtain the specific form of the probability density around the quasi-endemic equilibrium of the stochastic system. Finally, numerical simulations are introduced to validate the theoretical findings.

Suggested Citation

  • Liu, Qun & Jiang, Daqing, 2023. "Stationary distribution and probability density for a stochastic SEIR-type model of coronavirus (COVID-19) with asymptomatic carriers," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001571
    DOI: 10.1016/j.chaos.2023.113256
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923001571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye Wang & Thabet Abdeljawad & Anwarud Din, 2022. "Modeling The Dynamics Of Stochastic Norovirus Epidemic Model With Time Delay," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(05), pages 1-13, August.
    2. Lu, Minmin & Wang, Yan & Jiang, Daqing, 2021. "Stationary distribution and probability density function analysis of a stochastic HIV model with cell-to-cell infection," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    3. Zhu, Yu & Wang, Liang & Qiu, Zhipeng, 2022. "Dynamics of a stochastic cholera epidemic model with Lévy process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    4. Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Ge, Junyan & Zuo, Wenjie & Jiang, Daqing, 2022. "Stationary distribution and density function analysis of a stochastic epidemic HBV model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 232-255.
    6. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    7. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Rathinasamy, A. & Chinnadurai, M. & Athithan, S., 2021. "Analysis of exact solution of stochastic sex-structured HIV/AIDS epidemic model with effect of screening of infectives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 213-237.
    9. Han, Bingtao & Zhou, Baoquan & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2024. "A novel SIRS epidemic model for two diseases incorporating treatment functions, media coverage, and three types of noise," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Li, Shuang & Xiong, Jie, 2024. "SIR epidemic model with non-Lipschitz stochastic perturbations," Statistics & Probability Letters, Elsevier, vol. 210(C).
    4. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    5. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2023. "An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Sayed Murad Ali Shah & Yufeng Nie & Anwarud Din & Abdulwasea Alkhazzan, 2024. "Dynamics of Hepatitis B Virus Transmission with a Lévy Process and Vaccination Effects," Mathematics, MDPI, vol. 12(11), pages 1-24, May.
    7. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    8. Wang, Haile & Zuo, Wenjie & Jiang, Daqing, 2023. "Dynamical analysis of a stochastic epidemic HBV model with log-normal Ornstein–Uhlenbeck process and vertical transmission term," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Han, Bingtao & Jiang, Daqing, 2023. "Coexistence and extinction for a stochastic vegetation-water model motivated by Black–Karasinski process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    10. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Chinnadurai, M. & Fatini, Mohamed El & Rathinasamy, A., 2023. "Stochastic perturbation to 2-LTR dynamical model in HIV infected patients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 473-497.
    12. Liu, Chao & Tian, Yilin & Chen, Peng & Cheung, Lora, 2024. "Stochastic dynamic effects of media coverage and incubation on a distributed delayed epidemic system with Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    13. Liu, Qun & Jiang, Daqing, 2023. "Analysis of a stochastic inshore–offshore hairtail fishery model with Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    14. Liu, Yue, 2022. "Extinction, persistence and density function analysis of a stochastic two-strain disease model with drug resistance mutation," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    15. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    16. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    17. Ge, Junyan & Zuo, Wenjie & Jiang, Daqing, 2022. "Stationary distribution and density function analysis of a stochastic epidemic HBV model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 232-255.
    18. Shi, Zhenfeng & Jiang, Daqing, 2022. "Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    19. Rao, Feng & Luo, Junling, 2021. "Stochastic effects on an HIV/AIDS infection model with incomplete diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Shuang Li, 2024. "SIR Epidemic Model with General Nonlinear Incidence Rate and Lévy Jumps," Mathematics, MDPI, vol. 12(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.