IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v407y2021ics0096300321003982.html
   My bibliography  Save this article

Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis

Author

Listed:
  • Rajchakit, G.
  • Sriraman, R.
  • Vignesh, P.
  • Lim, C.P.

Abstract

In this paper, we focus on the global asymptotic stability problem for Clifford-valued neural network models with time-varying delays as well as impulsive effects. By considering impulsive effects, a general class of network model is considered, which encompasses real-valued, complex-valued, and quaternion-valued neural network models as special cases. Firstly, the n-dimensional Clifford-valued model is decomposed into 2mn-dimensional real-valued model, which avoids non-commutativity of multiplication of Clifford numbers. Based on the Lyapunov stability theory, contraction mapping principle, and some mathematical concepts, we derive the existence, uniqueness of the equilibrium point with respect to the model. New sufficient conditions are also derived, in order to ensure the global asymptotic stability of the considered model. To illustrate the usefulness of the obtained results, a simulation example is presented.

Suggested Citation

  • Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
  • Handle: RePEc:eee:apmaco:v:407:y:2021:i:c:s0096300321003982
    DOI: 10.1016/j.amc.2021.126309
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321003982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Jinde & Ho, Daniel W.C., 2005. "A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1317-1329.
    2. Tan, Manchun & Liu, Yunfeng & Xu, Desheng, 2019. "Multistability analysis of delayed quaternion-valued neural networks with nonmonotonic piecewise nonlinear activation functions," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 229-255.
    3. Han, Bingtao & Jiang, Daqing & Zhou, Baoquan & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Lu, Chun, 2021. "Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 316-332.
    5. L. Wang & H. P. Dai & H. Dong & Y. Y. Cao & Y. X. Sun, 2008. "Adaptive synchronization of weighted complex dynamical networks through pinning," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(3), pages 335-342, February.
    6. Chaouki Aouiti & Farah Dridi, 2020. "Weighted pseudo almost automorphic solutions for neutral type fuzzy cellular neural networks with mixed delays and D operator in Clifford algebra," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(10), pages 1759-1781, July.
    7. Bing Li & Yongkun Li, 2019. "Existence and Global Exponential Stability of Almost Automorphic Solution for Clifford-Valued High-Order Hopfield Neural Networks with Leakage Delays," Complexity, Hindawi, vol. 2019, pages 1-13, July.
    8. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    9. Han, Bingtao & Zhou, Baoquan & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    10. Song, Jia-Sheng & Chang, Xiao-Heng, 2020. "H∞ controller design of networked control systems with a new quantization structure," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    11. Yongkun Li & Jianglian Xiang, 2019. "Global Asymptotic Almost Periodic Synchronization of Clifford-Valued CNNs with Discrete Delays," Complexity, Hindawi, vol. 2019, pages 1-13, May.
    12. Lu, Chun & Ding, Xiaohua, 2019. "Periodic solutions and stationary distribution for a stochastic predator-prey system with impulsive perturbations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 313-322.
    13. Liu, Meng & Bai, Chuanzhi, 2020. "Optimal harvesting of a stochastic mutualism model with regime-switching," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    14. Zhou, Baoquan & Jiang, Daqing & Dai, Yucong & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Wang, Zhaojuan & Deng, Meiling & Liu, Meng, 2021. "Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Luo & Weiyi Hu & Enli Wu & Xiufang Yuan, 2024. "Global Exponential Stability of Impulsive Delayed Neural Networks with Parameter Uncertainties and Reaction–Diffusion Terms," Mathematics, MDPI, vol. 12(15), pages 1-15, July.
    2. Shen, Shiping & Meng, Xiaofang, 2023. "Finite-time stability of almost periodic solutions of Clifford-valued RNNs with time-varying delays and D operator on time scales," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Li, Yongkun & Wang, Xiaohui, 2021. "Almost periodic solutions in distribution of Clifford-valued stochastic recurrent neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    4. Grienggrai Rajchakit & Ramalingam Sriraman & Chee Peng Lim & Panu Sam-ang & Porpattama Hammachukiattikul, 2021. "Synchronization in Finite-Time Analysis of Clifford-Valued Neural Networks with Finite-Time Distributed Delays," Mathematics, MDPI, vol. 9(11), pages 1-18, May.
    5. Weiwei Qi & Yongkun Li, 2022. "Almost Anti-Periodic Oscillation Excited by External Inputs and Synchronization of Clifford-Valued Recurrent Neural Networks," Mathematics, MDPI, vol. 10(15), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    2. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Grienggrai Rajchakit & Ramalingam Sriraman & Chee Peng Lim & Panu Sam-ang & Porpattama Hammachukiattikul, 2021. "Synchronization in Finite-Time Analysis of Clifford-Valued Neural Networks with Finite-Time Distributed Delays," Mathematics, MDPI, vol. 9(11), pages 1-18, May.
    4. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    5. Lu, Chun, 2022. "Dynamical analysis and numerical simulations on a crowley-Martin predator-prey model in stochastic environment," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    6. Zhang, Zhengqiu & Yang, Zhen, 2023. "Asymptotic stability for quaternion-valued fuzzy BAM neural networks via integral inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Li, Donghua & Zhang, Zhengqiu & Zhang, Xiaoluan, 2020. "Periodic solutions of discrete-time Quaternion-valued BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Lu, Chun, 2021. "Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 316-332.
    10. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.
    11. Rao, Feng & Kang, Yun, 2023. "Dynamics of a stochastic prey–predator system with prey refuge, predation fear and its carry-over effects," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    12. Wu, Shuying & Yuan, Sanling & Lan, Guijie & Zhang, Tonghua, 2024. "Understanding the dynamics of hepatitis B transmission: A stochastic model with vaccination and Ornstein-Uhlenbeck process," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    13. Suriguga, & Kao, Yonggui & Shao, Chuntao & Chen, Xiangyong, 2021. "Stability of high-order delayed Markovian jumping reaction-diffusion HNNs with uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    14. Mu, Xiaojie & Jiang, Daqing, 2024. "Dynamics caused by the mean-reverting Ornstein–Uhlenbeck process in a stochastic predator–prey model with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    15. Wang, Weiwei & Cao, Jinde, 2006. "Synchronization in an array of linearly coupled networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 197-211.
    16. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    17. Baluni, Sapna & Sehgal, Ishani & Yadav, Vijay K. & Das, Subir, 2024. "Exponential synchronization of a class of quaternion-valued neural network with time-varying delays: A Matrix Measure Approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    18. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    19. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    20. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:407:y:2021:i:c:s0096300321003982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.