IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924008002.html
   My bibliography  Save this article

Homoclinic behavior around a degenerate heteroclinic cycle in a Lorenz-like system

Author

Listed:
  • Algaba, A.
  • Fernández-Sánchez, F.
  • Merino, M.
  • Rodríguez-Luis, A.J.

Abstract

In this work, we analyze a degenerate heteroclinic cycle that appears in a Lorenz-like system when one of the involved equilibria changes from real saddle to saddle-focus. First, from a theoretical model based on the construction of a Poincaré return map, we demonstrate that an infinite number of homoclinic connections arise from the point of the parameter plane where the degenerate heteroclinic cycle appears. The subsequent numerical study not only illustrates the presence of the first homoclinic orbits in the infinite succession but also allows to find other important local and global organizing centers of codimension two (Bogdanov–Takens bifurcations, degenerate homoclinic and heteroclinic connections, T-points) and three (triple-zero bifurcation, doubly-degenerate heteroclinic cycles, degenerate T-points).

Suggested Citation

  • Algaba, A. & Fernández-Sánchez, F. & Merino, M. & Rodríguez-Luis, A.J., 2024. "Homoclinic behavior around a degenerate heteroclinic cycle in a Lorenz-like system," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008002
    DOI: 10.1016/j.chaos.2024.115248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924008002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mello, L.F. & Messias, M. & Braga, D.C., 2008. "Bifurcation analysis of a new Lorenz-like chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1244-1255.
    2. Munmuangsaen, Buncha & Srisuchinwong, Banlue, 2018. "A hidden chaotic attractor in the classical Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 61-66.
    3. Chan-López, E. & Castellanos, Víctor, 2022. "Biological control in a simple ecological model via subcritical Hopf and Bogdanov-Takens bifurcations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Lv, Yunfei & Pei, Yongzhen & Wang, Yong, 2019. "Bifurcations and simulations of two predator–prey models with nonlinear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 158-170.
    5. Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Drubi, Fátima & Ibáñez, Santiago & Pilarczyk, Paweł, 2021. "Nilpotent singularities and chaos: Tritrophic food chains," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Faradja, Philippe & Qi, Guoyuan, 2020. "Analysis of multistability, hidden chaos and transient chaos in brushless DC motor," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    8. Sprott, J.C. & Munmuangsaen, Buncha, 2018. "Comment on “A hidden chaotic attractor in the classical Lorenz system”," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 261-262.
    9. Pelino, Vinicio & Maimone, Filippo & Pasini, Antonello, 2014. "Energy cycle for the Lorenz attractor," Chaos, Solitons & Fractals, Elsevier, vol. 64(C), pages 67-77.
    10. Bella, Giovanni, 2017. "Homoclinic bifurcation and the Belyakov degeneracy in a variant of the Romer model of endogenous growth," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 452-460.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Yu, Hui & Du, Shengzhi & Dong, Enzeng & Tong, Jigang, 2022. "Transient behaviors and equilibria-analysis-based boundary crisis analysis in a smooth 4D dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Faradja, Philippe & Qi, Guoyuan, 2020. "Analysis of multistability, hidden chaos and transient chaos in brushless DC motor," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Li, Chunbiao & Sprott, Julien Clinton & Zhang, Xin & Chai, Lin & Liu, Zuohua, 2022. "Constructing conditional symmetry in symmetric chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Peng, Xuenan & Zeng, Yicheng, 2020. "Image encryption application in a system for compounding self-excited and hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Wu, Qiujie & Hong, Qinghui & Liu, Xiaoyang & Wang, Xiaoping & Zeng, Zhigang, 2020. "A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    7. Cang, Shijian & Wang, Luo & Zhang, Yapeng & Wang, Zenghui & Chen, Zengqiang, 2022. "Bifurcation and chaos in a smooth 3D dynamical system extended from Nosé-Hoover oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    8. Surendar, R. & Muthtamilselvan, M. & Ahn, Kyubok, 2024. "Stochastic disturbance with finite-time chaos stabilization and synchronization for a fractional-order nonautonomous hybrid nonlinear complex system via a sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2023. "A class of PSO-tuned controllers in Lorenz chaotic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 430-449.
    10. Li, Wenjie & Guan, Yajuan & Cao, Jinde & Xu, Fei, 2024. "Global dynamics and threshold control of a discontinuous fishery ecological system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    11. Yang, Shuangling & Qu, Jingjia, 2021. "On first integrals of a family of generalized Lorenz-like systems," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. Alexeeva, Tatyana A. & Kuznetsov, Nikolay V. & Mokaev, Timur N., 2021. "Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    14. Jia, Hongyan & Shi, Wenxin & Wang, Lei & Qi, Guoyuan, 2020. "Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    15. Liumeng Yang & Ruichun He & Jie Wang & Hongxing Zhao & Huo Chai, 2024. "Analysis of Dynamic Behavior of Gravity Model Using the Techniques of Road Saturation and Hilbert Curve Dimensionality Reduction," Sustainability, MDPI, vol. 16(13), pages 1-19, July.
    16. Hunaish, Ahmed Sadeq & Tahir, Fadhil Rahma, 2023. "Bifurcation and chaos from drilling system driven by IFOCIM," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    17. Huang, Pengfei & Chai, Yi & Chen, Xiaolong, 2022. "Multiple dynamics analysis of Lorenz-family systems and the application in signal detection," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    18. Belokolos, E.D. & Kharchenko, V.O. & Kharchenko, D.O., 2009. "Chaos in a generalized Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2595-2605.
    19. Chen, Mo & Wang, Ankai & Wang, Chao & Wu, Huagan & Bao, Bocheng, 2022. "DC-offset-induced hidden and asymmetric dynamics in Memristive Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    20. Marick, Sounov & Bhattacharya, Santanu & Bairagi, Nandadulal, 2023. "Dynamic properties of a reaction–diffusion predator–prey model with nonlinear harvesting: A linear and weakly nonlinear analysis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.