IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v476y2024ics0096300324002340.html
   My bibliography  Save this article

Understanding the dynamics of hepatitis B transmission: A stochastic model with vaccination and Ornstein-Uhlenbeck process

Author

Listed:
  • Wu, Shuying
  • Yuan, Sanling
  • Lan, Guijie
  • Zhang, Tonghua

Abstract

In this paper, we explore and analyze a stochastic epidemiological model with vaccination and two mean-reverting Ornstein-Uhlenbeck processes to describe the dynamics of HBV transmission. Our study begins by deriving a sufficient condition for the extinction of hepatitis B. Additionally, we determine the presence of a stationary distribution using the Markov process stability theory. Next, we utilize algebraic equation theory and the associated Fokker-Planck equation to derive an explicit expression for the unique probability density function. To validate our theoretical findings, we conduct several numerical simulations using hepatitis B data provided by the World Health Organization (WHO). The results of these simulations support and complement our analytical approach.

Suggested Citation

  • Wu, Shuying & Yuan, Sanling & Lan, Guijie & Zhang, Tonghua, 2024. "Understanding the dynamics of hepatitis B transmission: A stochastic model with vaccination and Ornstein-Uhlenbeck process," Applied Mathematics and Computation, Elsevier, vol. 476(C).
  • Handle: RePEc:eee:apmaco:v:476:y:2024:i:c:s0096300324002340
    DOI: 10.1016/j.amc.2024.128766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324002340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Bingtao & Jiang, Daqing & Zhou, Baoquan & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Khan, Tahir & Khan, Amir & Zaman, Gul, 2018. "The extinction and persistence of the stochastic hepatitis B epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 123-128.
    3. Zhang, Xiaofeng & Yuan, Rong, 2021. "A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    4. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Zhang, Shengqiang & Yuan, Sanling & Zhang, Tonghua, 2022. "A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    6. Din, Anwarud & Li, Yongjin & Yusuf, Abdullahi, 2021. "Delayed hepatitis B epidemic model with stochastic analysis," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Zhou, Baoquan & Jiang, Daqing & Dai, Yucong & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    2. Mu, Xiaojie & Jiang, Daqing, 2024. "Dynamics caused by the mean-reverting Ornstein–Uhlenbeck process in a stochastic predator–prey model with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    4. Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Hoang, Manh Tuan, 2023. "Dynamical analysis of a generalized hepatitis B epidemic model and its dynamically consistent discrete model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 291-314.
    6. Rao, Feng & Kang, Yun, 2023. "Dynamics of a stochastic prey–predator system with prey refuge, predation fear and its carry-over effects," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Su, Tan & Yang, Qing & Zhang, Xinhong & Jiang, Daqing, 2023. "Stationary distribution, extinction and probability density function of a stochastic SEIV epidemic model with general incidence and Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    8. Liu, Qun & Jiang, Daqing, 2023. "Analysis of a stochastic inshore–offshore hairtail fishery model with Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Li, Xiao-Ping & Din, Anwarud & Zeb, Anwar & Kumar, Sunil & Saeed, Tareq, 2022. "The impact of Lévy noise on a stochastic and fractal-fractional Atangana–Baleanu order hepatitis B model under real statistical data," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    10. Tingting Xue & Xiaolin Fan & Yan Xu, 2023. "Kinetic Behavior and Optimal Control of a Fractional-Order Hepatitis B Model," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    11. Li, Shuang & Xiong, Jie, 2024. "SIR epidemic model with non-Lipschitz stochastic perturbations," Statistics & Probability Letters, Elsevier, vol. 210(C).
    12. Qi, Haokun & Liu, Bing & Li, Shi, 2024. "Stability, bifurcation, and chaos of a stage-structured predator-prey model under fear-induced and delay," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    13. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    14. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    15. Sayed Murad Ali Shah & Yufeng Nie & Anwarud Din & Abdulwasea Alkhazzan, 2024. "Dynamics of Hepatitis B Virus Transmission with a Lévy Process and Vaccination Effects," Mathematics, MDPI, vol. 12(11), pages 1-24, May.
    16. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    17. Din, Anwarud, 2024. "Bifurcation analysis of a delayed stochastic HBV epidemic model: Cell-to-cell transmission," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    18. Chen, Xingzhi & Tian, Baodan & Xu, Xin & Zhang, Hailan & Li, Dong, 2023. "A stochastic predator–prey system with modified LG-Holling type II functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 449-485.
    19. Wang, Haile & Zuo, Wenjie & Jiang, Daqing, 2023. "Dynamical analysis of a stochastic epidemic HBV model with log-normal Ornstein–Uhlenbeck process and vertical transmission term," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    20. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:476:y:2024:i:c:s0096300324002340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.