Dynamics of an influenza epidemic model incorporating immune boosting and Ornstein–Uhlenbeck process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2024.115446
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cai, Yongli & Jiao, Jianjun & Gui, Zhanji & Liu, Yuting & Wang, Weiming, 2018. "Environmental variability in a stochastic epidemic model," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 210-226.
- Tan, Yiping & Cai, Yongli & Sun, Xiaodan & Wang, Kai & Yao, Ruoxia & Wang, Weiming & Peng, Zhihang, 2022. "A stochastic SICA model for HIV/AIDS transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
- Yang, Ying & Zhang, Jingwen & Wang, Kaiyuan & Zhang, Guofang, 2024. "Stationary distribution, density function and extinction of a stochastic SIQR epidemic model with Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
- Wang, Weiming & Cai, Yongli & Ding, Zuqin & Gui, Zhanji, 2018. "A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 921-936.
- Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Hui Chen & Xuewen Tan & Jun Wang & Wenjie Qin & Wenhui Luo, 2023. "Stochastic Dynamics of a Virus Variant Epidemic Model with Double Inoculations," Mathematics, MDPI, vol. 11(7), pages 1-29, April.
- Shi, Zhenfeng & Jiang, Daqing, 2022. "Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
- Liu, Qun & Jiang, Daqing, 2023. "Analysis of a stochastic inshore–offshore hairtail fishery model with Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Nicola Jones, 2021. "Why easing COVID restrictions could prompt a fierce flu rebound," Nature, Nature, vol. 598(7881), pages 395-395, October.
- Ding Chen & Leonard F. S. Wang & Ji Sun, 2023. "Does CSR influence privatization wave?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 1088-1097, March.
- Fahlena, Hilda & Kusdiantara, Rudy & Nuraini, Nuning & Soewono, Edy, 2022. "Dynamical analysis of two-pathogen coinfection in influenza and other respiratory diseases," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Christopher P & Tugce Cuhadaroglu & Yusufcan Masatlioglu, 2023. "Behavioral Influence," Journal of the European Economic Association, European Economic Association, vol. 21(1), pages 135-166.
- Wang, Haile & Zuo, Wenjie & Jiang, Daqing, 2023. "Dynamical analysis of a stochastic epidemic HBV model with log-normal Ornstein–Uhlenbeck process and vertical transmission term," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Threshold behavior in two types of stochastic three strains influenza virus models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Laaribi, Aziz & Boukanjime, Brahim & El Khalifi, Mohamed & Bouggar, Driss & El Fatini, Mohamed, 2023. "A generalized stochastic SIRS epidemic model incorporating mean-reverting Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
- Liu, Qun & Jiang, Daqing, 2023. "Analysis of a stochastic inshore–offshore hairtail fishery model with Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
- Lan, Guijie & Wei, Chunjin & Zhang, Shuwen, 2019. "Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 828-842.
- Liu, Qun & Jiang, Daqing, 2020. "Stationary distribution of a stochastic cholera model with imperfect vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
- Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
- Bao, Kangbo & Zhang, Qimin & Rong, Libin & Li, Xining, 2019. "Dynamics of an imprecise SIRS model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 489-506.
- Huo, Hai-Feng & Jing, Shuang-Lin & Wang, Xun-Yang & Xiang, Hong, 2020. "Modeling and analysis of a H1N1 model with relapse and effect of Twitter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
- Tian, Baodan & Zhang, Yong & Li, Jiamei, 2020. "Stochastic perturbations for a duopoly Stackelberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Cai, Yongli & Ding, Zuqin & Yang, Bin & Peng, Zhihang & Wang, Weiming, 2019. "Transmission dynamics of Zika virus with spatial structure—A case study in Rio de Janeiro, Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 729-740.
- Han, Bingtao & Jiang, Daqing, 2023. "Coexistence and extinction for a stochastic vegetation-water model motivated by Black–Karasinski process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
- Zhai, Xuanpei & Li, Wenshuang & Wei, Fengying & Mao, Xuerong, 2023. "Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Ran, Xue & Hu, Lin & Nie, Lin-Fei & Teng, Zhidong, 2021. "Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate," Applied Mathematics and Computation, Elsevier, vol. 394(C).
- Lu, Chun & Xu, Chuanlong, 2024. "Dynamic properties for a stochastic SEIR model with Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 288-300.
- Tuerxun, Nafeisha & Wen, Buyu & Teng, Zhidong, 2021. "The stationary distribution in a class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 888-912.
- Laaribi, Aziz & Boukanjime, Brahim & El Khalifi, Mohamed & Bouggar, Driss & El Fatini, Mohamed, 2023. "A generalized stochastic SIRS epidemic model incorporating mean-reverting Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
- Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Gao, Miaomiao & Jiang, Daqing & Ding, Jieyu, 2023. "Dynamical behavior of a nutrient–plankton model with Ornstein–Uhlenbeck process and nutrient recycling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Li, Shuang & Xiong, Jie, 2024. "SIR epidemic model with non-Lipschitz stochastic perturbations," Statistics & Probability Letters, Elsevier, vol. 210(C).
More about this item
Keywords
Influenza; Mathematical models; Immune boosting; Ornstein–Uhlenbeck process; Threshold dynamics; Probability density function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924009986. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.