IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0262708.html
   My bibliography  Save this article

Deep learning via LSTM models for COVID-19 infection forecasting in India

Author

Listed:
  • Rohitash Chandra
  • Ayush Jain
  • Divyanshu Singh Chauhan

Abstract

The COVID-19 pandemic continues to have major impact to health and medical infrastructure, economy, and agriculture. Prominent computational and mathematical models have been unreliable due to the complexity of the spread of infections. Moreover, lack of data collection and reporting makes modelling attempts difficult and unreliable. Hence, we need to re-look at the situation with reliable data sources and innovative forecasting models. Deep learning models such as recurrent neural networks are well suited for modelling spatiotemporal sequences. In this paper, we apply recurrent neural networks such as long short term memory (LSTM), bidirectional LSTM, and encoder-decoder LSTM models for multi-step (short-term) COVID-19 infection forecasting. We select Indian states with COVID-19 hotpots and capture the first (2020) and second (2021) wave of infections and provide two months ahead forecast. Our model predicts that the likelihood of another wave of infections in October and November 2021 is low; however, the authorities need to be vigilant given emerging variants of the virus. The accuracy of the predictions motivate the application of the method in other countries and regions. Nevertheless, the challenges in modelling remain due to the reliability of data and difficulties in capturing factors such as population density, logistics, and social aspects such as culture and lifestyle.

Suggested Citation

  • Rohitash Chandra & Ayush Jain & Divyanshu Singh Chauhan, 2022. "Deep learning via LSTM models for COVID-19 infection forecasting in India," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-28, January.
  • Handle: RePEc:plo:pone00:0262708
    DOI: 10.1371/journal.pone.0262708
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262708
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0262708&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0262708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. S. Mahendra Dev & Rajeswari Sengupta, 2020. "Covid-19: Impact on the Indian economy," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2020-013, Indira Gandhi Institute of Development Research, Mumbai, India.
    3. Junling Gao & Pinpin Zheng & Yingnan Jia & Hao Chen & Yimeng Mao & Suhong Chen & Yi Wang & Hua Fu & Junming Dai, 2020. "Mental health problems and social media exposure during COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-10, April.
    4. Callard, Felicity & Perego, Elisa, 2021. "How and why patients made Long Covid," Social Science & Medicine, Elsevier, vol. 268(C).
    5. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    6. Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Ali, Furqan & Ullah, Farman & Khan, Junaid Iqbal & Khan, Jebran & Sardar, Abdul Wasay & Lee, Sungchang, 2023. "COVID-19 spread control policies based early dynamics forecasting using deep learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Beyer, Robert C.M. & Franco-Bedoya, Sebastian & Galdo, Virgilio, 2021. "Examining the economic impact of COVID-19 in India through daily electricity consumption and nighttime light intensity," World Development, Elsevier, vol. 140(C).
    5. Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    6. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    7. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    9. Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
    10. Sadananda Prusty & Anubha & Saurabh Gupta, 2021. "On the Road to Recovery: The Role of Post-Lockdown Stimulus Package," FIIB Business Review, , vol. 11(2), pages 206-224, June.
    11. Turner, Melody & Beckwith, Helen & Spratt, Tanisha & Vallejos, Elvira Perez & Coughlan, Barry, 2023. "The #longcovid revolution: A reflexive thematic analysis," Social Science & Medicine, Elsevier, vol. 333(C).
    12. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    13. Lorenzo Menculini & Andrea Marini & Massimiliano Proietti & Alberto Garinei & Alessio Bozza & Cecilia Moretti & Marcello Marconi, 2021. "Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices," Forecasting, MDPI, vol. 3(3), pages 1-19, September.
    14. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    15. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    16. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Jacqueline A. Krysa & Sidney Horlick & Kiran Pohar Manhas & Katharina Kovacs Burns & Mikayla Buell & Maria J. Santana & Kristine Russell & Elizabeth Papathanassoglou & Chester Ho, 2023. "Accessing Care Services for Long COVID Sufferers in Alberta, Canada: A Random, Cross-Sectional Survey Study," IJERPH, MDPI, vol. 20(15), pages 1-14, July.
    18. Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
    19. Kumar, Pavan & Singh, S.S. & Pandey, A.K. & Singh, Ram Kumar & Srivastava, Prashant Kumar & Kumar, Manoj & Dubey, Shantanu Kumar & Sah, Uma & Nandan, Rajiv & Singh, Susheel Kumar & Agrawal, Priyanshi , 2021. "Multi-level impacts of the COVID-19 lockdown on agricultural systems in India: The case of Uttar Pradesh," Agricultural Systems, Elsevier, vol. 187(C).
    20. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0262708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.