IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305993.html
   My bibliography  Save this article

Neural network powered COVID-19 spread forecasting model

Author

Listed:
  • Wieczorek, Michał
  • Siłka, Jakub
  • Woźniak, Marcin

Abstract

Virus spread prediction is very important to actively plan actions. Viruses are unfortunately not easy to control, since speed and reach of spread depends on many factors from environmental to social ones. In this article we present research results on developing Neural Network model for COVID-19 spread prediction. Our predictor is based on classic approach with deep architecture which learns by using NAdam training model. For the training we have used official data from governmental and open repositories. Results of prediction are done for countries but also regions to provide possibly wide spectrum of values about predicted COVID-19 spread. Results of the proposed model show high accuracy, which in some cases reaches above 99%.

Suggested Citation

  • Wieczorek, Michał & Siłka, Jakub & Woźniak, Marcin, 2020. "Neural network powered COVID-19 spread forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305993
    DOI: 10.1016/j.chaos.2020.110203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
    3. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ballı, Serkan, 2021. "Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Abdelrahman E. E. Eltoukhy & Ibrahim Abdelfadeel Shaban & Felix T. S. Chan & Mohammad A. M. Abdel-Aal, 2020. "Data Analytics for Predicting COVID-19 Cases in Top Affected Countries: Observations and Recommendations," IJERPH, MDPI, vol. 17(19), pages 1-25, September.
    3. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    4. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
    5. Paul, Ayan & Reja, Selim & Kundu, Sayani & Bhattacharya, Sabyasachi, 2021. "COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Mustafa Abdul Salam & Sanaa Taha & Mohamed Ramadan, 2021. "COVID-19 detection using federated machine learning," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-25, June.
    7. Yas Al-Hadeethi & Intesar F. El Ramley & Hiba Mohammed & Nada M. Bedaiwi & Abeer Z. Barasheed, 2024. "A Novel Computational Instrument Based on a Universal Mixture Density Network with a Gaussian Mixture Model as a Backbone for Predicting COVID-19 Variants’ Distributions," Mathematics, MDPI, vol. 12(8), pages 1-24, April.
    8. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Jayles, Bertrand & Cheong, Siew Ann & Herrmann, Hans J., 2022. "Modeling the resilience of social networks to lockdowns regarding the dynamics of meetings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Michał Wieczorek & Jakub Siłka & Dawid Połap & Marcin Woźniak & Robertas Damaševičius, 2020. "Real-time neural network based predictor for cov19 virus spread," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
    5. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Torrealba-Rodriguez, O. & Conde-Gutiérrez, R.A. & Hernández-Javier, A.L., 2020. "Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Mohammad Amin Hariri-Ardebili, 2020. "Living in a Multi-Risk Chaotic Condition: Pandemic, Natural Hazards and Complex Emergencies," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    8. Păcurar, Cristina-Maria & Necula, Bogdan-Radu, 2020. "An analysis of COVID-19 spread based on fractal interpolation and fractal dimension," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Victor Zakharov & Yulia Balykina & Ovanes Petrosian & Hongwei Gao, 2020. "CBRR Model for Predicting the Dynamics of the COVID-19 Epidemic in Real Time," Mathematics, MDPI, vol. 8(10), pages 1-10, October.
    10. Vaishnav, Vaibhav & Vajpai, Jayashri, 2020. "Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Castillo, Oscar & Melin, Patricia, 2020. "Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    13. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    14. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    15. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    19. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    20. Emrah Gecili & Assem Ziady & Rhonda D Szczesniak, 2021. "Forecasting COVID-19 confirmed cases, deaths and recoveries: Revisiting established time series modeling through novel applications for the USA and Italy," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.