IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i8p1254-d1379622.html
   My bibliography  Save this article

A Novel Computational Instrument Based on a Universal Mixture Density Network with a Gaussian Mixture Model as a Backbone for Predicting COVID-19 Variants’ Distributions

Author

Listed:
  • Yas Al-Hadeethi

    (Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Intesar F. El Ramley

    (Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Hiba Mohammed

    (Fondazione Novara Sviluppo, 28100 Novara, Italy)

  • Nada M. Bedaiwi

    (Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Abeer Z. Barasheed

    (Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

Various published COVID-19 models have been used in epidemiological studies and healthcare planning to model and predict the spread of the disease and appropriately realign health measures and priorities given the resource limitations in the field of healthcare. However, a significant issue arises when these models need help identifying the distribution of the constituent variants of COVID-19 infections. The emergence of such a challenge means that, given limited healthcare resources, health planning would be ineffective and cost lives. This work presents a universal neural network (NN) computational instrument for predicting the mainstream symptomatic infection rate of COVID-19 and models of the distribution of its associated variants. The NN is based on a mixture density network (MDN) with a Gaussian mixture model (GMM) object as a backbone. Twelve use cases were used to demonstrate the validity and reliability of the proposed MDN. The use cases included COVID-19 data for Canada and Saudi Arabia, two date ranges (300 and 500 days), two input data modes, and three activation functions, each with different implementations of the batch size and epoch value. This array of scenarios provided an opportunity to investigate the impacts of epistemic uncertainty (EU) and aleatoric uncertainty (AU) on the prediction model’s fitting. The model accuracy readings were in the high nineties based on a tolerance margin of 0.0125. The primary outcome of this work indicates that this easy-to-use universal MDN helps provide reliable predictions of COVID-19 variant distributions and the corresponding synthesized profile of the mainstream infection rate.

Suggested Citation

  • Yas Al-Hadeethi & Intesar F. El Ramley & Hiba Mohammed & Nada M. Bedaiwi & Abeer Z. Barasheed, 2024. "A Novel Computational Instrument Based on a Universal Mixture Density Network with a Gaussian Mixture Model as a Backbone for Predicting COVID-19 Variants’ Distributions," Mathematics, MDPI, vol. 12(8), pages 1-24, April.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1254-:d:1379622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/8/1254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/8/1254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zubair Ahmad & Zahra Almaspoor & Faridoon Khan & Mahmoud El-Morshedy, 2022. "On Predictive Modeling Using a New Flexible Weibull Distribution and Machine Learning Approach: Analyzing the COVID-19 Data," Mathematics, MDPI, vol. 10(11), pages 1-26, May.
    2. Xinyu Liu & Yuting Ding, 2022. "Stability and Numerical Simulations of a New SVIR Model with Two Delays on COVID-19 Booster Vaccination," Mathematics, MDPI, vol. 10(10), pages 1-27, May.
    3. Wieczorek, Michał & Siłka, Jakub & Woźniak, Marcin, 2020. "Neural network powered COVID-19 spread forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
    2. Leilei Han & Haokun Sui & Yuting Ding, 2022. "Mathematical Modeling and Stability Analysis of a Delayed Carbon Absorption-Emission Model Associated with China’s Adjustment of Industrial Structure," Mathematics, MDPI, vol. 10(17), pages 1-21, August.
    3. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Olga Krivorotko & Nikolay Zyatkov, 2024. "The Forecasting of the Spread of Infectious Diseases Based on Conditional Generative Adversarial Networks," Mathematics, MDPI, vol. 12(19), pages 1-22, September.
    5. Mustafa Abdul Salam & Sanaa Taha & Mohamed Ramadan, 2021. "COVID-19 detection using federated machine learning," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-25, June.
    6. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    8. Abdelrahman E. E. Eltoukhy & Ibrahim Abdelfadeel Shaban & Felix T. S. Chan & Mohammad A. M. Abdel-Aal, 2020. "Data Analytics for Predicting COVID-19 Cases in Top Affected Countries: Observations and Recommendations," IJERPH, MDPI, vol. 17(19), pages 1-25, September.
    9. Ballı, Serkan, 2021. "Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Paul, Ayan & Reja, Selim & Kundu, Sayani & Bhattacharya, Sabyasachi, 2021. "COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Jayles, Bertrand & Cheong, Siew Ann & Herrmann, Hans J., 2022. "Modeling the resilience of social networks to lockdowns regarding the dynamics of meetings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1254-:d:1379622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.