IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924007732.html
   My bibliography  Save this article

Tracking problem of the Julia set for the SIS model with saturated treatment function under noise

Author

Listed:
  • Liu, Tongtao
  • Zhang, Yongping

Abstract

The tracking problem of Julia sets of the SIS (Susceptible–Infectious–Susceptible) model with saturated healing function under noise perturbation is investigated. Firstly, a discrete version of the SIS model with saturated healing function and its Julia set are introduced. Secondly, the structure of the Julia set are discussed, and the result shows that the filled-in Julia set of this model can be presented as a bounded set with positive measure and an unbounded set. The numerical result shows that the measure of the latter is almost zero. Then, the tracking problem of the Julia sets for the SIS model with saturated healing function is proposed. To address this problem, differential dynamic programming (DDP) and model predictive control (MPC) are used to design controllers. Controllers with different objective functions are compared across their performance. At last, a metric for evaluating the tracking performance is suggested, and a more effective objective function is proposed based on this metric.

Suggested Citation

  • Liu, Tongtao & Zhang, Yongping, 2024. "Tracking problem of the Julia set for the SIS model with saturated treatment function under noise," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007732
    DOI: 10.1016/j.chaos.2024.115221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varma, Rashmi & Sushil,, 2019. "Bridging the electricity demand and supply gap using dynamic modeling in the Indian context," Energy Policy, Elsevier, vol. 132(C), pages 515-535.
    2. Barman, Madhab & Mishra, Nachiketa, 2024. "Hopf bifurcation analysis for a delayed nonlinear-SEIR epidemic model on networks," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Khajanchi, Subhas & Das, Dhiraj Kumar & Kar, Tapan Kumar, 2018. "Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 52-71.
    5. Shu, Jingsi & Zhang, Yongping, 2023. "Fractal control and synchronization of population competition model based on the T–S fuzzy model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
    7. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "The impact of the media awareness and optimal strategy on the prevalence of tuberculosis," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    8. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    9. Das, Dhiraj Kumar & Khajanchi, Subhas & Kar, T.K., 2020. "Transmission dynamics of tuberculosis with multiple re-infections," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    10. Wang, Yupin & Liu, Shutang & Li, Hui & Wang, Da, 2019. "On the spatial Julia set generated by fractional Lotka-Volterra system with noise," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 129-138.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    3. Bandekar, Shraddha Ramdas & Ghosh, Mini, 2022. "A co-infection model on TB - COVID-19 with optimal control and sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 1-31.
    4. Huang, Song & Liu, Zhijun & Wang, Lianwen, 2024. "Backward bifurcation and optimal control problem for a tuberculosis model incorporating LTBI detectivity and exogenous reinfection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1104-1123.
    5. Das, Dhiraj Kumar & Kar, T.K., 2021. "Global dynamics of a tuberculosis model with sensitivity of the smear microscopy," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
    7. Das, Riya & Das, Dhiraj Kumar & Kar, Tapan Kumar, 2024. "Qualitative analysis of TB transmission dynamics considering both the age since latency and relapse," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 939-967.
    8. Kumar Das, Dhiraj & Khatua, Anupam & Kar, T.K. & Jana, Soovoojeet, 2021. "The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    9. Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Xie, Xiaoxiao & Huo, Liang’an, 2024. "The coupled dynamics of information-behavior-epidemic propagation considering the heterogeneity of adoption thresholds and network structures in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).
    11. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    12. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Spatial dynamics of a fractional predator-prey system with time delay and Allee effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    14. Fatima Sulayman & Farah Aini Abdullah & Mohd Hafiz Mohd, 2021. "An SVEIRE Model of Tuberculosis to Assess the Effect of an Imperfect Vaccine and Other Exogenous Factors," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    15. Chen, Yi & Wang, Lianwen & Zhang, Jinhui, 2024. "Global asymptotic stability of an age-structured tuberculosis model: An analytical method to determine kernel coefficients in Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    18. Juang, Jonq & Liang, Yu-Hao, 2024. "Epidemic models in well-mixed multiplex networks with distributed time delay," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    19. Aslam, Naveed & Yang, Wanping & Arslan, Muhammad & Ashraf, Bilal, 2024. "Environmental regulations as a solution for energy security risk and energy gap: Evidence from highly energy intensive economies," Applied Energy, Elsevier, vol. 374(C).
    20. Wang, Renfei & Li, Yilin & Wu, Dayu & Zou, Yong & Tang, Ming & Guan, Shuguang & Liu, Ying & Jin, Zhen & Pelinovsky, Efim & Kirillin, Mikhail & Macau, Elbert, 2024. "Impact of agent-based intervention strategies on the COVID-19 pandemic in large-scale dynamic contact networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.