IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p3044-d1488221.html
   My bibliography  Save this article

The Forecasting of the Spread of Infectious Diseases Based on Conditional Generative Adversarial Networks

Author

Listed:
  • Olga Krivorotko

    (Sobolev Institute of Mathematics SB RAS, Akademician Koptuyg Ave. 4, 630090 Novosibirsk, Russia
    These authors contributed equally to this work.)

  • Nikolay Zyatkov

    (Sobolev Institute of Mathematics SB RAS, Akademician Koptuyg Ave. 4, 630090 Novosibirsk, Russia
    These authors contributed equally to this work.)

Abstract

New epidemics encourage the development of new mathematical models of the spread and forecasting of infectious diseases. Statistical epidemiology data are characterized by incomplete and inexact time series, which leads to an unstable and non-unique forecasting of infectious diseases. In this paper, a model of a conditional generative adversarial neural network (CGAN) for modeling and forecasting COVID-19 in St. Petersburg is constructed. It takes 20 processed historical statistics as a condition and is based on the solution of the minimax problem. The CGAN builds a short-term forecast of the number of newly diagnosed COVID-19 cases in the region for 5 days ahead. The CGAN approach allows modeling the distribution of statistical data, which allows obtaining the required amount of training data from the resulting distribution. When comparing the forecasting results with the classical differential SEIR-HCD model and a recurrent neural network with the same input parameters, it was shown that the forecast errors of all three models are in the same range. It is shown that the prediction error of the bagging model based on three models is lower than the results of each model separately.

Suggested Citation

  • Olga Krivorotko & Nikolay Zyatkov, 2024. "The Forecasting of the Spread of Infectious Diseases Based on Conditional Generative Adversarial Networks," Mathematics, MDPI, vol. 12(19), pages 1-22, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3044-:d:1488221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/3044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/3044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beatriz González-Pérez & Concepción Núñez & José L. Sánchez & Gabriel Valverde & José Manuel Velasco, 2021. "Expert System to Model and Forecast Time Series of Epidemiological Counts with Applications to COVID-19," Mathematics, MDPI, vol. 9(13), pages 1-34, June.
    2. Wieczorek, Michał & Siłka, Jakub & Woźniak, Marcin, 2020. "Neural network powered COVID-19 spread forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
    2. Yas Al-Hadeethi & Intesar F. El Ramley & Hiba Mohammed & Nada M. Bedaiwi & Abeer Z. Barasheed, 2024. "A Novel Computational Instrument Based on a Universal Mixture Density Network with a Gaussian Mixture Model as a Backbone for Predicting COVID-19 Variants’ Distributions," Mathematics, MDPI, vol. 12(8), pages 1-24, April.
    3. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Mustafa Abdul Salam & Sanaa Taha & Mohamed Ramadan, 2021. "COVID-19 detection using federated machine learning," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-25, June.
    5. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    7. Abdelrahman E. E. Eltoukhy & Ibrahim Abdelfadeel Shaban & Felix T. S. Chan & Mohammad A. M. Abdel-Aal, 2020. "Data Analytics for Predicting COVID-19 Cases in Top Affected Countries: Observations and Recommendations," IJERPH, MDPI, vol. 17(19), pages 1-25, September.
    8. Ballı, Serkan, 2021. "Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Paul, Ayan & Reja, Selim & Kundu, Sayani & Bhattacharya, Sabyasachi, 2021. "COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Jayles, Bertrand & Cheong, Siew Ann & Herrmann, Hans J., 2022. "Modeling the resilience of social networks to lockdowns regarding the dynamics of meetings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3044-:d:1488221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.