IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920303441.html
   My bibliography  Save this article

Time Series Analysis and Forecast of the COVID-19 Pandemic in India using Genetic Programming

Author

Listed:
  • Salgotra, Rohit
  • Gandomi, Mostafa
  • Gandomi, Amir H

Abstract

COVID-19 declared as a global pandemic by WHO, has emerged as the most aggressive disease, impacting more than 90% countries of the world. The virus started from a single human being in China, is now increasing globally at a rate of 3% to 5% daily and has become a never ending process. Some studies even predict that the virus will stay with us forever. India being the second most populous country of the world, is also not saved, and the virus is spreading as a community level transmitter. Therefore, it become really important to analyse the possible impact of COVID-19 in India and forecast how it will behave in the days to come. In present work, prediction models based on genetic programming (GP) have been developed for confirmed cases (CC) and death cases (DC) across three most affected states namely Maharashtra, Gujarat and Delhi as well as whole India. The proposed prediction models are presented using explicit formula, and impotence of prediction variables are studied. Here, statistical parameters and metrics have been used for evaluated and validate the evolved models. From the results, it has been found that the proposed GEP-based models use simple linkage functions and are highly reliable for time series prediction of COVID-19 cases in India.

Suggested Citation

  • Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H, 2020. "Time Series Analysis and Forecast of the COVID-19 Pandemic in India using Genetic Programming," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303441
    DOI: 10.1016/j.chaos.2020.109945
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Khan, Firdos & Saeed, Alia & Ali, Shaukat, 2020. "Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using Vector Autoregressive model in Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Roberto Morcillo-Jimenez & Karel Gutiérrez-Batista & Juan Gómez-Romero, 2023. "TSxtend: A Tool for Batch Analysis of Temporal Sensor Data," Energies, MDPI, vol. 16(4), pages 1-29, February.
    4. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Nikola Anđelić & Sandi Baressi Šegota & Ivan Lorencin & Zdravko Jurilj & Tijana Šušteršič & Anđela Blagojević & Alen Protić & Tomislav Ćabov & Nenad Filipović & Zlatan Car, 2021. "Estimation of COVID-19 Epidemiology Curve of the United States Using Genetic Programming Algorithm," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    6. ArunKumar, K.E. & Kalaga, Dinesh V. & Kumar, Ch. Mohan Sai & Kawaji, Masahiro & Brenza, Timothy M, 2021. "Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Jose M. Martin-Moreno & Antoni Alegre-Martinez & Victor Martin-Gorgojo & Jose Luis Alfonso-Sanchez & Ferran Torres & Vicente Pallares-Carratala, 2022. "Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(9), pages 1-16, May.
    8. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Zehra Taşkın, 2021. "Forecasting the future of library and information science and its sub-fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1527-1551, February.
    10. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    11. Antoni Wiliński & Łukasz Kupracz & Aneta Senejko & Grzegorz Chrząstek, 2022. "COVID-19: average time from infection to death in Poland, USA, India and Germany," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4729-4746, December.
    12. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    13. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Lazebnik, Teddy, 2023. "Computational applications of extended SIR models: A review focused on airborne pandemics," Ecological Modelling, Elsevier, vol. 483(C).
    15. Göran Svensson & Rocio Rodriguez & Carmen Padin, 2024. "A Lesson for Sustainable Health Policy from the Past with Implications for the Future," Sustainability, MDPI, vol. 16(5), pages 1-12, February.
    16. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    17. Oladunni Abimbola Amos & Yusuff Adebayo Adebisi & Adeola Bamisaiye & Alaka Hassan Olayemi & Esther Bosede Ilesanmi & Alumuku Iordepuun Micheal & Aniekan Ekpenyong & Don Eliseo Lucero‐Prisno, 2021. "COVID‐19 and progress towards achieving universal health coverage in Africa: A case of Nigeria," International Journal of Health Planning and Management, Wiley Blackwell, vol. 36(5), pages 1417-1422, September.
    18. Muhammad Nauman Zahid & Simone Perna, 2021. "Continent-Wide Analysis of COVID 19: Total Cases, Deaths, Tests, Socio-Economic, and Morbidity Factors Associated to the Mortality Rate, and Forecasting Analysis in 2020–2021," IJERPH, MDPI, vol. 18(10), pages 1-10, May.
    19. Behnood, Ali & Mohammadi Golafshani, Emadaldin & Hosseini, Seyedeh Mohaddeseh, 2020. "Determinants of the infection rate of the COVID-19 in the U.S. using ANFIS and virus optimization algorithm (VOA)," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    2. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Mayra R Tocto-Erazo & Jorge A Espíndola-Zepeda & José A Montoya-Laos & Manuel A Acuña-Zegarra & Daniel Olmos-Liceaga & Pablo A Reyes-Castro & Gudelia Figueroa-Preciado, 2020. "Lockdown, relaxation, and acme period in COVID-19: A study of disease dynamics in Hermosillo, Sonora, Mexico," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
    6. Cho, Jung-Hoon & Kim, Dong-Kyu & Kim, Eui-Jin, 2022. "Multi-scale causality analysis between COVID-19 cases and mobility level using ensemble empirical mode decomposition and causal decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    7. Kumar Das, Dhiraj & Khatua, Anupam & Kar, T.K. & Jana, Soovoojeet, 2021. "The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    8. Medda, Rakesh & Tiwari, Pankaj Kumar & Pal, Samares, 2024. "Impacts of planktonic components on the dynamics of cholera epidemic: Implications from a mathematical model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 505-526.
    9. Nascimento, Diego C. & Pimentel, Bruno A. & Souza, Renata M.C.R. & Costa, Lilia & Gonçalves, Sandro & Louzada, Francisco, 2021. "Dynamic graph in a symbolic data framework: An account of the causal relation using COVID-19 reports and some reflections on the financial world," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    10. Paul, James Nicodemus & Mbalawata, Isambi Sailon & Mirau, Silas Steven & Masandawa, Lemjini, 2023. "Mathematical modeling of vaccination as a control measure of stress to fight COVID-19 infections," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    11. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Wieczorek, Michał & Siłka, Jakub & Woźniak, Marcin, 2020. "Neural network powered COVID-19 spread forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Zhu, Ping, 2021. "An equivalent analytical method to deal with cross-correlated exponential type noises in the nonlinear dynamic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Boukanjime, Brahim & Caraballo, Tomás & El Fatini, Mohamed & El Khalifi, Mohamed, 2020. "Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    16. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    17. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    18. Rafiq, Danish & Suhail, Suhail Ahmad & Bazaz, Mohammad Abid, 2020. "Evaluation and prediction of COVID-19 in India: A case study of worst hit states," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    19. Li, Tingting & Guo, Youming, 2022. "Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    20. Aldila, Dipo & Khoshnaw, Sarbaz H.A. & Safitri, Egi & Anwar, Yusril Rais & Bakry, Aanisah R.Q. & Samiadji, Brenda M. & Anugerah, Demas A. & GH, M. Farhan Alfarizi & Ayulani, Indri D. & Salim, Sheryl N, 2020. "A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.