IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v219y2024icp505-526.html
   My bibliography  Save this article

Impacts of planktonic components on the dynamics of cholera epidemic: Implications from a mathematical model

Author

Listed:
  • Medda, Rakesh
  • Tiwari, Pankaj Kumar
  • Pal, Samares

Abstract

The aim of this paper is to investigate the role of plankton populations in the aquatic reservoir on the transmission dynamics of acute cholera within the human communities. To this, we develop a nonlinear six dimensional mathematical model that combines the plankton populations with the epidemiological SIR-type human subpopulations and the V. cholerae bacterial population in the aquatic reservoir. It is assumed that the susceptible humans become infected either by ingesting zooplankton, which serves as a reservoir for the cholera pathogen, by free-living V. cholerae in the water, or by cholera-infected individuals. We explore the existence and stability of all biologically plausible equilibria of the system. Also, we determine basic reproduction number (R0) and introduced an additional threshold, named planktonic factor (E0), that is found to significantly affect the cholera transmission. Furthermore, cholera-free equilibrium encounters transcritical bifurcation at R0=1 within the planktonic factor’s unitary range. We perform some sensitivity tests to determine how the epidemic thresholds R0 and E0 will respond to change in the parametric values. The existence of saddle–node bifurcation is shown numerically. Our findings reveal that there are strong connections between the planktonic blooms and the cholera epidemic. We observe that even while eliminating cholera from the human population is very difficult, we may nevertheless lessen the epidemic condition by enhancing immunization, treatment and other preventive measures.

Suggested Citation

  • Medda, Rakesh & Tiwari, Pankaj Kumar & Pal, Samares, 2024. "Impacts of planktonic components on the dynamics of cholera epidemic: Implications from a mathematical model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 505-526.
  • Handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:505-526
    DOI: 10.1016/j.matcom.2023.12.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423005451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.12.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berge, Tsanou & Bowong, Samuel & Lubuma, Jean M.-S., 2017. "Global stability of a two-patch cholera model with fast and slow transmissions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 142-164.
    2. Jing'an Cui & Zhanmin Wu & Xueyong Zhou, 2014. "Mathematical Analysis of a Cholera Model with Vaccination," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-16, February.
    3. Nicholas Kwasi-Do Ohene Opoku & Cecilia Afriyie, 2020. "The Role of Control Measures and the Environment in the Transmission Dynamics of Cholera," Abstract and Applied Analysis, Hindawi, vol. 2020, pages 1-16, February.
    4. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. D. Scott Merrell & Susan M. Butler & Firdausi Qadri & Nadia A. Dolganov & Ahsfaqul Alam & Mitchell B. Cohen & Stephen B. Calderwood & Gary K. Schoolnik & Andrew Camilli, 2002. "Host-induced epidemic spread of the cholera bacterium," Nature, Nature, vol. 417(6889), pages 642-645, June.
    6. Misra, A.K. & Gupta, Alok & Venturino, Ezio, 2016. "Cholera dynamics with Bacteriophage infection: A mathematical study," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 610-621.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    2. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Zhou, Xueyong & Shi, Xiangyun & Wei, Ming, 2022. "Dynamical behavior and optimal control of a stochastic mathematical model for cholera," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Rafiq, Danish & Suhail, Suhail Ahmad & Bazaz, Mohammad Abid, 2020. "Evaluation and prediction of COVID-19 in India: A case study of worst hit states," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Faïçal Ndaïrou & Iván Area & Delfim F. M. Torres, 2020. "Mathematical Modeling of Japanese Encephalitis under Aquatic Environmental Effects," Mathematics, MDPI, vol. 8(11), pages 1-14, October.
    9. Li, Tingting & Guo, Youming, 2022. "Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    10. Aldila, Dipo & Khoshnaw, Sarbaz H.A. & Safitri, Egi & Anwar, Yusril Rais & Bakry, Aanisah R.Q. & Samiadji, Brenda M. & Anugerah, Demas A. & GH, M. Farhan Alfarizi & Ayulani, Indri D. & Salim, Sheryl N, 2020. "A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Malki, Zohair & Atlam, El-Sayed & Hassanien, Aboul Ella & Dagnew, Guesh & Elhosseini, Mostafa A. & Gad, Ibrahim, 2020. "Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    12. Bagal, Dilip Kumar & Rath, Arati & Barua, Abhishek & Patnaik, Dulu, 2020. "Estimating the parameters of susceptible-infected-recovered model of COVID-19 cases in India during lockdown periods," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Wang, Jingjing & Zheng, Hongchan & Jia, Yunfeng, 2021. "Dynamical analysis on a bacteria-phages model with delay and diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    14. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution of a stochastic cholera model between communities linked by migration," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    15. Xueyong Zhou, 2022. "Dynamical Analysis of a Stochastic Cholera Epidemic Model," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
    16. Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Toshikazu Kuniya, 2021. "Structure of epidemic models: toward further applications in economics," The Japanese Economic Review, Springer, vol. 72(4), pages 581-607, October.
    18. Mayra R Tocto-Erazo & Jorge A Espíndola-Zepeda & José A Montoya-Laos & Manuel A Acuña-Zegarra & Daniel Olmos-Liceaga & Pablo A Reyes-Castro & Gudelia Figueroa-Preciado, 2020. "Lockdown, relaxation, and acme period in COVID-19: A study of disease dynamics in Hermosillo, Sonora, Mexico," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
    19. Parsamanesh, Mahmood & Erfanian, Majid, 2018. "Global dynamics of an epidemic model with standard incidence rate and vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 192-199.
    20. Khajji, Bouchaib & Kouidere, Abdelfatah & Elhia, Mohamed & Balatif, Omar & Rachik, Mostafa, 2021. "Fractional optimal control problem for an age-structured model of COVID-19 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:505-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.