IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v646y2024ics0378437124003613.html
   My bibliography  Save this article

Impact of agent-based intervention strategies on the COVID-19 pandemic in large-scale dynamic contact networks

Author

Listed:
  • Wang, Renfei
  • Li, Yilin
  • Wu, Dayu
  • Zou, Yong
  • Tang, Ming
  • Guan, Shuguang
  • Liu, Ying
  • Jin, Zhen
  • Pelinovsky, Efim
  • Kirillin, Mikhail
  • Macau, Elbert

Abstract

Many intervention strategies, such as patient isolation and contact tracking, had been implemented in different countries to slow down and control the spread because of the enormous threats and losses caused by COVID-19. Since the contact relationships of millions of people within cities change over time, it is difficult to accurately predict the dynamics of large-scale outbreaks and evaluate the impact of the contact tracking and isolation strategy based on individual contact history on epidemic transmission. Here, we propose a non-markov spreading model based on individual contact dynamic network, to simulate the dynamic contact processes in a city with millions of people. In this model, the historical contact population of each infected person can be backtracked and tracked. Our model can accurately describe the COVID-19 epidemic in Wuhan and Hong Kong. We assess the impact of four agent-based epidemic intervention strategies: travel control, contact tracking and isolation, vaccination, and regular nucleic acid testing to all residents on the epidemic evolution and economic losses. We find that for the original SARS-CoV-2 virus, a strict travel control strategy is effective in both suppressing the spread of COVID-19 and minimizing economic losses. For the Omicron variant (BA.2) with stronger infectious capacity, a relatively loose travel control and an appropriate combination of the other three strategies can effectively control the epidemic outbreak while minimize economic losses. This paper provides an efficient framework for assessing the combination of different agent-based strategies by large-scale simulations in the case of unknown historical contact information of large populations, and the studies on different combinations of control strategies can provide theoretical guidance for future prevention and control.

Suggested Citation

  • Wang, Renfei & Li, Yilin & Wu, Dayu & Zou, Yong & Tang, Ming & Guan, Shuguang & Liu, Ying & Jin, Zhen & Pelinovsky, Efim & Kirillin, Mikhail & Macau, Elbert, 2024. "Impact of agent-based intervention strategies on the COVID-19 pandemic in large-scale dynamic contact networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
  • Handle: RePEc:eee:phsmap:v:646:y:2024:i:c:s0378437124003613
    DOI: 10.1016/j.physa.2024.129852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124003613
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basnarkov, Lasko & Tomovski, Igor & Sandev, Trifce & Kocarev, Ljupco, 2022. "Non-Markovian SIR epidemic spreading model of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Contreras, Sebastián & Villavicencio, H. Andrés & Medina-Ortiz, David & Biron-Lattes, Juan Pablo & Olivera-Nappa, Álvaro, 2020. "A multi-group SEIRA model for the spread of COVID-19 among heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Mishra, Bimal Kumar & Keshri, Ajit Kumar & Rao, Yerra Shankar & Mishra, Binay Kumar & Mahato, Buddhadeo & Ayesha, Syeda & Rukhaiyyar, Bansidhar Prasad & Saini, Dinesh Kumar & Singh, Aditya Kumar, 2020. "COVID-19 created chaos across the globe: Three novel quarantine epidemic models," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Bian, Zilin & Zuo, Fan & Gao, Jingqin & Chen, Yanyan & Pavuluri Venkata, Sai Sarath Chandra & Duran Bernardes, Suzana & Ozbay, Kaan & Ban, Xuegang (Jeff) & Wang, Jingxing, 2021. "Time lag effects of COVID-19 policies on transportation systems: A comparative study of New York City and Seattle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 269-283.
    6. Jana Lasser & Johannes Sorger & Lukas Richter & Stefan Thurner & Daniela Schmid & Peter Klimek, 2022. "Assessing the impact of SARS-CoV-2 prevention measures in Austrian schools using agent-based simulations and cluster tracing data," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Joren Raymenants & Caspar Geenen & Jonathan Thibaut & Klaas Nelissen & Sarah Gorissen & Emmanuel Andre, 2022. "Empirical evidence on the efficiency of backward contact tracing in COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    9. Lorenzo Pellis & Simon Cauchemez & Neil M. Ferguson & Christophe Fraser, 2020. "Systematic selection between age and household structure for models aimed at emerging epidemic predictions," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    10. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    2. Malki, Zohair & Atlam, El-Sayed & Hassanien, Aboul Ella & Dagnew, Guesh & Elhosseini, Mostafa A. & Gad, Ibrahim, 2020. "Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Castillo, Oscar & Melin, Patricia, 2021. "A new fuzzy fractal control approach of non-linear dynamic systems: The case of controlling the COVID-19 pandemics," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Castillo, Oscar & Melin, Patricia, 2020. "Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    7. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. X. Angela Yao & Andrew Crooks & Bin Jiang & Jukka Krisp & Xintao Liu & Haosheng Huang, 2023. "An overview of urban analytical approaches to combating the Covid-19 pandemic," Environment and Planning B, , vol. 50(5), pages 1133-1143, June.
    9. Yin Huang & Runda Liu & Shumin Huang & Gege Yang & Xiaofan Zhang & Yin Qin & Lisha Mao & Sishi Sheng & Biao Huang, 2021. "Imbalance and breakout in the post-epidemic era: Research into the spatial patterns of freight demand network in six provinces of central China," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-18, April.
    10. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    11. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
    12. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    14. Mingke Xie & Yang Chen & Luliang Tang, 2022. "Exploring the Impact of Localized COVID-19 Events on Intercity Mobility during the Normalized Prevention and Control Period in China," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    15. Pan, Yu & He, Sylvia Y., 2022. "Analyzing COVID-19’s impact on the travel mobility of various social groups in China’s Greater Bay Area via mobile phone big data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 263-281.
    16. Liu, Tongtao & Zhang, Yongping, 2024. "Tracking problem of the Julia set for the SIS model with saturated treatment function under noise," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    17. Tu, Yunbo & Meng, Xinzhu & Alzahrani, Abdullah Khames & Zhang, Tonghua, 2023. "Multi-objective optimization and nonlinear dynamics for sub-healthy COVID-19 epidemic model subject to self-diffusion and cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    18. Jiansuo Pei & Gaaitzen de Vries & Meng Zhang, 2022. "International trade and Covid‐19: City‐level evidence from China's lockdown policy," Journal of Regional Science, Wiley Blackwell, vol. 62(3), pages 670-695, June.
    19. Askar Akaev & Alexander I. Zvyagintsev & Askar Sarygulov & Tessaleno Devezas & Andrea Tick & Yuri Ichkitidze, 2022. "Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    20. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Yang, Zhenzhen & Yuan, Zhilu & Kang, Liujiang, 2022. "The effects of Wuhan highway lockdown measures on the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 117(C), pages 169-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:646:y:2024:i:c:s0378437124003613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.