IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304483.html
   My bibliography  Save this article

Determinants of the infection rate of the COVID-19 in the U.S. using ANFIS and virus optimization algorithm (VOA)

Author

Listed:
  • Behnood, Ali
  • Mohammadi Golafshani, Emadaldin
  • Hosseini, Seyedeh Mohaddeseh

Abstract

Recently, anovel coronavirus disease (COVID-19) has become a serious concern for global public health. Infectious disease outbreaks such as COVID-19 can also significantly affect the sustainable development of urban areas. Several factors such as population density and climatology parameters could potentially affect the spread of the COVID-19. In this study, a combination of the virus optimization algorithm (VOA) and adaptive network-based fuzzy inference system (ANFIS) was used to investigate the effects of various climate-related factors and population density on the spread of the COVID-19. For this purpose, data on the climate-related factors and the confirmed infected cases by the COVID-19 across the U.S counties was used. The results show that the variable defined for the population density had the most significant impact on the performance of the developed models, which is an indication of the importance of social distancing in reducing the infection rate and spread rate of the COVID-19. Among the climatology parameters, an increase in the maximum temperature was found to slightly reduce the infection rate. Average temperature, minimum temperature, precipitation, and average wind speed were not found to significantly affect the spread of the COVID-19 while an increase in the relative humidity was found to slightly increase the infection rate. The findings of this research show that it could be expected to have slightly reduced infection rate over the summer season. However, it should be noted that the models developed in this study were based on limited one-month data. Future investigation can benefit from using more comprehensive data covering a wider range for the input variables.

Suggested Citation

  • Behnood, Ali & Mohammadi Golafshani, Emadaldin & Hosseini, Seyedeh Mohaddeseh, 2020. "Determinants of the infection rate of the COVID-19 in the U.S. using ANFIS and virus optimization algorithm (VOA)," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304483
    DOI: 10.1016/j.chaos.2020.110051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lahmiri, Salim & Bekiros, Stelios, 2020. "The impact of COVID-19 pandemic upon stability and sequential irregularity of equity and cryptocurrency markets," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Arias Velásquez, Ricardo Manuel & Mejía Lara, Jennifer Vanessa, 2020. "Forecast and evaluation of COVID-19 spreading in USA with reduced-space Gaussian process regression," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Behrouz Pirouz & Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas & Patrizia Piro, 2020. "Investigating a Serious Challenge in the Sustainable Development Process: Analysis of Confirmed cases of COVID-19 (New Type of Coronavirus) Through a Binary Classification Using Artificial Intelligenc," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    4. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H, 2020. "Time Series Analysis and Forecast of the COVID-19 Pandemic in India using Genetic Programming," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Xiao-Dong Yang & Hong-Li Li & Yue-E Cao, 2021. "Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location," IJERPH, MDPI, vol. 18(2), pages 1-13, January.
    3. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    4. Huilong Wang & Meimei Wang & Rong Yang & Huijuan Yang, 2023. "Urban Resilience of Important Node Cities in Population Migration under the Influence of COVID-19 Based on Mamdani Fuzzy Inference System," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    5. Baidaa Mutasher Rashed & Nirvana Popescu, 2024. "Medical Image-Based Diagnosis Using a Hybrid Adaptive Neuro-Fuzzy Inferences System (ANFIS) Optimized by GA with a Deep Network Model for Features Extraction," Mathematics, MDPI, vol. 12(5), pages 1-32, February.
    6. Joanna Wyrobek, 2020. "The Use of Decision Trees for Analysis of the Potential Determinants for the Incidence of Deaths and Cases of Coronavirus (Covid-19) in Different Countries," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 3), pages 556-566.
    7. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. James, Nick & Menzies, Max & Chan, Jennifer, 2021. "Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    6. James, Nick, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    7. Sharov, Konstantin S., 2020. "Creating and applying SIR modified compartmental model for calculation of COVID-19 lockdown efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Nick James, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Papers 2101.00576, arXiv.org, revised Feb 2021.
    9. Nuruddeen Usman & Kodili Nwanneka & Nduka, 2023. "Announcement Effect of COVID-19 on Cryptocurrencies," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 3(3), pages 1-4.
    10. Jiang, Yonghong & Wu, Lanxin & Tian, Gengyu & Nie, He, 2021. "Do cryptocurrencies hedge against EPU and the equity market volatility during COVID-19? – New evidence from quantile coherency analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    11. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    12. Roberto Morcillo-Jimenez & Karel Gutiérrez-Batista & Juan Gómez-Romero, 2023. "TSxtend: A Tool for Batch Analysis of Temporal Sensor Data," Energies, MDPI, vol. 16(4), pages 1-29, February.
    13. Zhang, Pengcheng & Xu, Kunpeng & Qi, Jiayin, 2023. "The impact of regulation on cryptocurrency market volatility in the context of the COVID-19 pandemic — evidence from China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 222-246.
    14. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Assaf, Ata & Mokni, Khaled & Youssef, Manel, 2023. "COVID-19 and information flow between cryptocurrencies, and conventional financial assets," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 73-81.
    17. Espinosa-Paredes, G. & Rodriguez, E. & Alvarez-Ramirez, J., 2022. "A singular value decomposition entropy approach to assess the impact of Covid-19 on the informational efficiency of the WTI crude oil market," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    18. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Vidal-Tomás, David, 2021. "Transitions in the cryptocurrency market during the COVID-19 pandemic: A network analysis," Finance Research Letters, Elsevier, vol. 43(C).
    20. Zehra Taşkın, 2021. "Forecasting the future of library and information science and its sub-fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1527-1551, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.