IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i3p959-d485231.html
   My bibliography  Save this article

Estimation of COVID-19 Epidemiology Curve of the United States Using Genetic Programming Algorithm

Author

Listed:
  • Nikola Anđelić

    (Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia)

  • Sandi Baressi Šegota

    (Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia)

  • Ivan Lorencin

    (Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia)

  • Zdravko Jurilj

    (Clinical Hospital Centre, Rijeka, Krešimirova ul. 42, 51000 Rijeka, Croatia)

  • Tijana Šušteršič

    (Faculty of Engineering, University of Kragujevac, Sestre Janjić, 34000 Kragujevac, Serbia
    Bioengineering Research and Development Centre (BioIRC), Prvoslava Stojanovića 6, 34000 Kragujevac, Serbia)

  • Anđela Blagojević

    (Faculty of Engineering, University of Kragujevac, Sestre Janjić, 34000 Kragujevac, Serbia
    Bioengineering Research and Development Centre (BioIRC), Prvoslava Stojanovića 6, 34000 Kragujevac, Serbia)

  • Alen Protić

    (Clinical Hospital Centre, Rijeka, Krešimirova ul. 42, 51000 Rijeka, Croatia
    Faculty of Medicine, University of Rijeka, Ul. Braće Branchetta 20/1, 51000, Rijeka, Croatia)

  • Tomislav Ćabov

    (Faculty of Dental Medicine, University of Rijeka, Kresimirova 40/42, 51000 Rijeka, Croatia)

  • Nenad Filipović

    (Faculty of Engineering, University of Kragujevac, Sestre Janjić, 34000 Kragujevac, Serbia
    Bioengineering Research and Development Centre (BioIRC), Prvoslava Stojanovića 6, 34000 Kragujevac, Serbia)

  • Zlatan Car

    (Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia)

Abstract

Estimation of the epidemiology curve for the COVID-19 pandemic can be a very computationally challenging task. Thus far, there have been some implementations of artificial intelligence (AI) methods applied to develop epidemiology curve for a specific country. However, most applied AI methods generated models that are almost impossible to translate into a mathematical equation. In this paper, the AI method called genetic programming (GP) algorithm is utilized to develop a symbolic expression (mathematical equation) which can be used for the estimation of the epidemiology curve for the entire U.S. with high accuracy. The GP algorithm is utilized on the publicly available dataset that contains the number of confirmed, deceased and recovered patients for each U.S. state to obtain the symbolic expression for the estimation of the number of the aforementioned patient groups. The dataset consists of the latitude and longitude of the central location for each state and the number of patients in each of the goal groups for each day in the period of 22 January 2020–3 December 2020. The obtained symbolic expressions for each state are summed up to obtain symbolic expressions for estimation of each of the patient groups (confirmed, deceased and recovered). These symbolic expressions are combined to obtain the symbolic expression for the estimation of the epidemiology curve for the entire U.S. The obtained symbolic expressions for the estimation of the number of confirmed, deceased and recovered patients for each state achieved R 2 score in the ranges 0.9406–0.9992, 0.9404–0.9998 and 0.9797–0.99955, respectively. These equations are summed up to formulate symbolic expressions for the estimation of the number of confirmed, deceased and recovered patients for the entire U.S. with achieved R 2 score of 0.9992, 0.9997 and 0.9996, respectively. Using these symbolic expressions, the equation for the estimation of the epidemiology curve for the entire U.S. is formulated which achieved R 2 score of 0.9933. Investigation showed that GP algorithm can produce symbolic expressions for the estimation of the number of confirmed, recovered and deceased patients as well as the epidemiology curve not only for the states but for the entire U.S. with very high accuracy.

Suggested Citation

  • Nikola Anđelić & Sandi Baressi Šegota & Ivan Lorencin & Zdravko Jurilj & Tijana Šušteršič & Anđela Blagojević & Alen Protić & Tomislav Ćabov & Nenad Filipović & Zlatan Car, 2021. "Estimation of COVID-19 Epidemiology Curve of the United States Using Genetic Programming Algorithm," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:3:p:959-:d:485231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/3/959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/3/959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neely, Christopher J. & Weller, Paul A. & Ulrich, Joshua M., 2009. "The Adaptive Markets Hypothesis: Evidence from the Foreign Exchange Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(2), pages 467-488, April.
    2. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Michael C Grant & Luke Geoghegan & Marc Arbyn & Zakaria Mohammed & Luke McGuinness & Emily L Clarke & Ryckie G Wade, 2020. "The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    4. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    5. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H, 2020. "Time Series Analysis and Forecast of the COVID-19 Pandemic in India using Genetic Programming," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    2. Shaoren Wang & Yenchun Jim Wu & Ruiting Li, 2022. "An Improved Genetic Algorithm for Location Allocation Problem with Grey Theory in Public Health Emergencies," IJERPH, MDPI, vol. 19(15), pages 1-18, August.
    3. Davide Barbieri & Enrico Giuliani & Anna Del Prete & Amanda Losi & Matteo Villani & Alberto Barbieri, 2021. "How Artificial Intelligence and New Technologies Can Help the Management of the COVID-19 Pandemic," IJERPH, MDPI, vol. 18(14), pages 1-10, July.
    4. Rastko Jovanović & Miloš Davidović & Ivan Lazović & Maja Jovanović & Milena Jovašević-Stojanović, 2021. "Modelling Voluntary General Population Vaccination Strategies during COVID-19 Outbreak: Influence of Disease Prevalence," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    5. Derek Huang & Huanyu Tao & Qilong Wu & Sheng-You Huang & Yi Xiao, 2021. "Modeling of the Long-Term Epidemic Dynamics of COVID-19 in the United States," IJERPH, MDPI, vol. 18(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    2. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    3. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Khan, Firdos & Saeed, Alia & Ali, Shaukat, 2020. "Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using Vector Autoregressive model in Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Kırbaş, İsmail & Sözen, Adnan & Tuncer, Azim Doğuş & Kazancıoğlu, Fikret Şinasi, 2020. "Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Ho, Andrew Fu Wah & Liu, Nan & Ong, Marcus Eng Hock & Cheong, Kang Hao, 2022. "A deep learning architecture for forecasting daily emergency department visits with acuity levels," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    10. Rafael Pérez Abreu C. & Samantha Estrada & Héctor de-la-Torre-Gutiérrez, 2021. "A Two-Step Polynomial and Nonlinear Growth Approach for Modeling COVID-19 Cases in Mexico," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    11. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Jose M. Martin-Moreno & Antoni Alegre-Martinez & Victor Martin-Gorgojo & Jose Luis Alfonso-Sanchez & Ferran Torres & Vicente Pallares-Carratala, 2022. "Predictive Models for Forecasting Public Health Scenarios: Practical Experiences Applied during the First Wave of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(9), pages 1-16, May.
    13. Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
    14. Raydonal Ospina & João A. M. Gondim & Víctor Leiva & Cecilia Castro, 2023. "An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil," Mathematics, MDPI, vol. 11(14), pages 1-18, July.
    15. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Vaishnav, Vaibhav & Vajpai, Jayashri, 2020. "Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. ArunKumar, K.E. & Kalaga, Dinesh V. & Kumar, Ch. Mohan Sai & Kawaji, Masahiro & Brenza, Timothy M, 2021. "Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Rime, Dagfinn & Sarno, Lucio & Sojli, Elvira, 2010. "Exchange rate forecasting, order flow and macroeconomic information," Journal of International Economics, Elsevier, vol. 80(1), pages 72-88, January.
    19. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Chen, Catherine Huirong & Choy, Siu Kai & Tan, Yongxian, 2022. "The cash conversion cycle spread: International evidence," Journal of Banking & Finance, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:3:p:959-:d:485231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.