IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i7p2237-2242.html
   My bibliography  Save this article

Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate

Author

Listed:
  • Niu, Shengli
  • Han, Kuihua
  • Lu, Chunmei
  • Sun, Rongyue

Abstract

Thermal decomposition characteristic of calcium magnesium acetate (CMA), calcium acetate (CA) and magnesium acetate (MA) are investigated through thermogravimetric (TG) analysis at the heating rates of 5Â KÂ min-1, 7.5Â KÂ min-1, 10Â KÂ min-1 and 15Â KÂ min-1. After dehydration, the evaporation of carboxylic radical and carbon dioxide of CMA and CA exist in two separate segments, but for MA, this occurs together in just one segment without clear borderline. The curves of calculated CMA (C-CMA) and the deduced characteristic parameters illustrate the different characteristic of CA and MA from the corresponding components in CMA which may be the reason for the different performances of these sorbents in SO2 and NOx reduction. Also, the kinetic parameters of activation energy and reaction order of the three sorbents are calculated through Vyazovkin method and Avrami theory, respectively.

Suggested Citation

  • Niu, Shengli & Han, Kuihua & Lu, Chunmei & Sun, Rongyue, 2010. "Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate," Applied Energy, Elsevier, vol. 87(7), pages 2237-2242, July.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:7:p:2237-2242
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00009-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Han-min & Ma, Xiao-qian & Lai, Zhi-yi, 2009. "Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal," Applied Energy, Elsevier, vol. 86(9), pages 1741-1745, September.
    2. Roy, Sounak & Hegde, M.S. & Madras, Giridhar, 2009. "Catalysis for NOx abatement," Applied Energy, Elsevier, vol. 86(11), pages 2283-2297, November.
    3. Muthuraman, Marisamy & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis," Applied Energy, Elsevier, vol. 87(1), pages 141-148, January.
    4. Islas, Jorge & Grande, Genice, 2008. "Abatement costs of SO2-control options in the Mexican electric-power sector," Applied Energy, Elsevier, vol. 85(2-3), pages 80-94, February.
    5. Williams, Paul T. & Ahmad, Nasir, 2000. "Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis," Applied Energy, Elsevier, vol. 66(2), pages 113-133, June.
    6. Jaber, J. O. & Probert, S. D., 1999. "Pyrolysis and gasification kinetics of Jordanian oil-shales," Applied Energy, Elsevier, vol. 63(4), pages 269-286, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Shengli & Han, Kuihua & Zhao, Jianli & Lu, Chunmei, 2011. "Experimental study on nitric oxide reduction through calcium propionate reburning," Energy, Elsevier, vol. 36(2), pages 1003-1009.
    2. Shi, Jinsong & Xu, Jianguo & Cui, Hongmin & Zhou, Youwen & Yan, Nanfu & Yan, Runhan & You, Shengyong, 2024. "N-doped hierarchically porous carbons prepared with the assistance of chemical blowing and in-situ hard template as highly efficient CO2 adsorbents: A combined experimental and theoretical study," Energy, Elsevier, vol. 294(C).
    3. Marinković, Dalibor M. & Stanković, Miroslav V. & Veličković, Ana V. & Avramović, Jelena M. & Miladinović, Marija R. & Stamenković, Olivera O. & Veljković, Vlada B. & Jovanović, Dušan M., 2016. "Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1387-1408.
    4. Li, Hui & Wang, Yongbo & Ma, Xiaoling & Guo, Min & Li, Yan & Li, Guoning & Cui, Ping & Zhou, Shoujun & Yu, Mingzhi, 2022. "Synthesis of CaO/ZrO2 based catalyst by using UiO–66(Zr) and calcium acetate for biodiesel production," Renewable Energy, Elsevier, vol. 185(C), pages 970-977.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qing & Zhao, Weizhen & Liu, Hongpeng & Jia, Chunxia & Li, Shaohua, 2011. "Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion," Applied Energy, Elsevier, vol. 88(6), pages 2080-2087, June.
    2. Li, Kangkang & Yu, Hai & Qi, Guojie & Feron, Paul & Tade, Moses & Yu, Jingwen & Wang, Shujuan, 2015. "Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process," Applied Energy, Elsevier, vol. 148(C), pages 66-77.
    3. Gao, Xiang & Ding, Honglei & Du, Zhen & Wu, Zuliang & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2010. "Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization," Applied Energy, Elsevier, vol. 87(8), pages 2647-2651, August.
    4. Jiang, Kaiqi & Yu, Hai & Chen, Linghong & Fang, Mengxiang & Azzi, Merched & Cottrell, Aaron & Li, Kangkang, 2020. "An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology," Applied Energy, Elsevier, vol. 260(C).
    5. Al-Ayed, Omar S. & Matouq, M. & Anbar, Z. & Khaleel, Adnan M. & Abu-Nameh, Eyad, 2010. "Oil shale pyrolysis kinetics and variable activation energy principle," Applied Energy, Elsevier, vol. 87(4), pages 1269-1272, April.
    6. Zhang, Yuanbo & Zhang, Yutao & Li, Yaqing & Shi, Xueqiang & Che, Bo, 2022. "Determination of ignition temperature and kinetics and thermodynamics analysis of high-volatile coal based on differential derivative thermogravimetry," Energy, Elsevier, vol. 240(C).
    7. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor," Applied Energy, Elsevier, vol. 91(1), pages 67-74.
    8. Wanhe Hu & Jingxin Wang & Jianli Hu & Jamie Schuler & Shawn Grushecky & Changle Jiang & William Smith & Nan Nan & Edward M. Sabolsky, 2024. "Combustion Behaviors, Kinetics, and Thermodynamics of Naturally Decomposed and Torrefied Northern Red Oak ( Quercus rubra ) Forest Logging Residue," Energies, MDPI, vol. 17(7), pages 1-17, March.
    9. Chih Chen, 2015. "Assessing the Pollutant Abatement Cost of Greenhouse Gas Emission Regulation: A Case Study of Taiwan’s Freeway Bus Service Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 477-495, August.
    10. Junga, Robert & Pospolita, Janusz & Niemiec, Patrycja, 2020. "Combustion and grindability characteristics of palm kernel shells torrefied in a pilot-scale installation," Renewable Energy, Elsevier, vol. 147(P1), pages 1239-1250.
    11. Abu-Jrai, Ahmad M. & Al-Muhtaseb, Ala'a H. & Hasan, Ahmad O., 2017. "Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and conventional diesel)," Energy, Elsevier, vol. 119(C), pages 901-910.
    12. Nazari, S. & Shahhoseini, O. & Sohrabi-Kashani, A. & Davari, S. & Sahabi, H. & Rezaeian, A., 2012. "SO2 pollution of heavy oil-fired steam power plants in Iran," Energy Policy, Elsevier, vol. 43(C), pages 456-465.
    13. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    14. Yi, Honghong & Yang, Zhongyu & Tang, Xiaolong & Zhao, Shunzheng & Gao, Fengyu & Wang, Jiangen & Huang, Yonghai & Yang, Kun & Shi, Yiran & Xie, Xizhou, 2018. "Variations of apparent activation energy based on thermodynamics analysis of zeolitic imidazolate frameworks including pyrolysis and combustion," Energy, Elsevier, vol. 151(C), pages 782-798.
    15. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    16. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    17. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    18. Song, Xianzhi & Zhang, Chengkai & Shi, Yu & Li, Gensheng, 2019. "Production performance of oil shale in-situ conversion with multilateral wells," Energy, Elsevier, vol. 189(C).
    19. Huang, Zhian & Yu, Rongxia & Ding, Hao & Wang, Hongsheng & Quan, Sainan & Song, Donghong & Lei, Yukun & Gao, Yukun & Zhang, Yinghua & Wang, Pengfei, 2023. "Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
    20. Ziad Abu El-Rub & Joanna Kujawa & Samer Al-Gharabli, 2020. "Pyrolysis Kinetic Parameters of Omari Oil Shale Using Thermogravimetric Analysis," Energies, MDPI, vol. 13(16), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:7:p:2237-2242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.