IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223019278.html
   My bibliography  Save this article

Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion

Author

Listed:
  • Huang, Zhian
  • Yu, Rongxia
  • Ding, Hao
  • Wang, Hongsheng
  • Quan, Sainan
  • Song, Donghong
  • Lei, Yukun
  • Gao, Yukun
  • Zhang, Yinghua
  • Wang, Pengfei

Abstract

The current technologies employed to prevent the spontaneous combustion of coal, such as grouting, inert gas, retardants, gels and foams have the disadvantages of high pollution, easy failure at high temperature, and high cost. In this study, in order to develop an environmentally friendly, efficient and low-cost composite gel material to inhibit coal spontaneous combustion, tea polyphenols were added to the gel for grafting, while nanomaterial halloysite nanotubes were introduced for intercalation reaction. Finally, sodium bicarbonate and acetic acid were used as foaming agents to produce tea polyphenol nanofoaming gels. The microscopic characterization of the composite gel was studied using X-ray diffraction experiments and scanning electron microscopy. Experiments on physical properties such as fluidity, thermal stability and adhesion were also carried out. In addition, fire performance studies such as thermogravimetric experiments, oxidation kinetic analysis, infrared spectroscopy of gas products, analysis of the change law of active functional groups and crossing-point temperature analysis were completed. The results show that composite gel renders the activity of active functional groups inert, which inhibits coal spontaneous combustion, while it can cover the surface of coal and plug the fissures efficiently. Therefore, it is an ideal material to inhibit the spontaneous combustion of coal.

Suggested Citation

  • Huang, Zhian & Yu, Rongxia & Ding, Hao & Wang, Hongsheng & Quan, Sainan & Song, Donghong & Lei, Yukun & Gao, Yukun & Zhang, Yinghua & Wang, Pengfei, 2023. "Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019278
    DOI: 10.1016/j.energy.2023.128533
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128533?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xiaoxue & Yuan, Shujie & Li, Jinhu & Guo, Shengli & Yan, Zhuo, 2023. "Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    2. Xiao, Han-min & Ma, Xiao-qian & Lai, Zhi-yi, 2009. "Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal," Applied Energy, Elsevier, vol. 86(9), pages 1741-1745, September.
    3. Xue, Di & Hu, Xiangming & Cheng, Weimin & Yu, Xiaoxiao & Wu, Mingyue & Zhao, Yanyun & Lu, Yi & Pan, Rongkun & Niu, Huiyong & Hu, Shengyong, 2020. "Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate," Energy, Elsevier, vol. 213(C).
    4. Xue, Liming & Zhang, Wenjie & Zheng, Zhixue & Liu, Zhe & Meng, Shuo & Li, Huaqing & Du, Yulin, 2021. "Measurement and influential factors of the efficiency of coal resources of China’s provinces: Based on Bootstrap-DEA and Tobit," Energy, Elsevier, vol. 221(C).
    5. Xue, Di & Hu, Xiangming & Sun, Gongzheng & Wang, Kai & Liu, Tongyu & Wang, Jiqiang & Wang, Fusheng, 2023. "A study on a Janus-type composite solidified foam and its characteristics for preventing and controlling spontaneous combustion of coal," Energy, Elsevier, vol. 275(C).
    6. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni & Zhang, Jiaxin, 2023. "Inhibiting effect and mechanism of polyethylene glycol - Citric acid on coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    7. You, C.F. & Xu, X.C., 2010. "Coal combustion and its pollution control in China," Energy, Elsevier, vol. 35(11), pages 4467-4472.
    8. Huang, Zhian & Song, Donghong & Hu, Xiangming & Zhang, Yinghua & Gao, Yukun & Quan, Sainan & Yin, Yichao & Yang, Yifu & Luo, Hongsen & Ji, Yucheng, 2022. "A novel nano-modified inhibitor of tert-butyl hydroquinone/sodium polyacrylate for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 256(C).
    9. Guo, Shengli & Yan, Zhuo & Yuan, Shujie & Weile Geng,, 2021. "Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion," Energy, Elsevier, vol. 229(C).
    10. Hou, Ya-nan & Nie, Bai-sheng & Zhang, Zhe-hao & Kong, Fan-bei & Zhao, Dan & Wang, Xiao-tong & Wang, Cai-ping, 2022. "Inhibitory effect of green antioxidants acting on surface groups and structure on lignite," Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Wei & Gao, Ao & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong, 2023. "Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 282(C).
    2. Xu, Xiaoxue & Yuan, Shujie & Li, Jinhu & Guo, Shengli & Yan, Zhuo, 2023. "Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    3. Zhang, Yanni & Hou, Yunchao & Yang, Dan & Deng, Jun, 2024. "Transformation and migration of key elements during the thermal reaction of coal spontaneous combustion," Energy, Elsevier, vol. 290(C).
    4. Jiamin Tong & Yongbo Zhang & Na Zhao & Aijing Wu & Feifei Shi & Junxing Chen, 2023. "Study on the Temperature Field Change Characteristics of Coal Gangue Dumps under the Influence of Ambient Temperature in Heat Pipe Treatment," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    5. Fan, Xin-li & Ma, Li & Sheng, You-jie & Liu, Xi-xi & Wei, Gao-ming & Liu, Shang-ming, 2023. "Experimental investigation on the characteristics of XG/GG/HPAM gel foam and prevention of coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
    6. Jiang, Peng & Meng, Yang & Parvez, Ashak Mahmud & Dong, Xin-yue & Wu, Xin-yun & Xu, Meng-xia & Pang, Cheng Heng & Sun, Cheng-gong & Wu, Tao, 2021. "Influence of co-processing of coal and oil shale on combustion characteristics, kinetics and ash fusion behaviour," Energy, Elsevier, vol. 216(C).
    7. Yang, Xinlei & Chu, Tingxiang & Yu, Minggao & Wang, Liang & Li, Haitao & Wen, Wushuang & Wu, Mingqiu & Wang, Fengchuan & Wang, Jiachen, 2024. "Effect of mechanical energy input during mechanical crushing on the macrokinetics of the coal–oxygen reaction: A laboratory–scale study," Energy, Elsevier, vol. 290(C).
    8. Hou, Ya-nan & Nie, Bai-sheng & Zhang, Zhe-hao & Kong, Fan-bei & Zhao, Dan & Wang, Xiao-tong & Wang, Cai-ping, 2022. "Inhibitory effect of green antioxidants acting on surface groups and structure on lignite," Energy, Elsevier, vol. 257(C).
    9. Wanhe Hu & Jingxin Wang & Jianli Hu & Jamie Schuler & Shawn Grushecky & Changle Jiang & William Smith & Nan Nan & Edward M. Sabolsky, 2024. "Combustion Behaviors, Kinetics, and Thermodynamics of Naturally Decomposed and Torrefied Northern Red Oak ( Quercus rubra ) Forest Logging Residue," Energies, MDPI, vol. 17(7), pages 1-17, March.
    10. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    11. Junga, Robert & Pospolita, Janusz & Niemiec, Patrycja, 2020. "Combustion and grindability characteristics of palm kernel shells torrefied in a pilot-scale installation," Renewable Energy, Elsevier, vol. 147(P1), pages 1239-1250.
    12. Zhai, Yijie & Ma, Xiaotian & Gao, Feng & Zhang, Tianzuo & Hong, Jinglan & Zhang, Xu & Yuan, Xueliang & Li, Xiangzhi, 2020. "Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Huang, Jiliang & Tan, Bo & Gao, Liyang & Shao, Zhuangzhuang & Wang, Haiyan & Chen, Zhen, 2023. "A multi-channel reaction model study of key primary and secondary active groups in the low-temperature oxidation process of coal," Energy, Elsevier, vol. 283(C).
    14. Ju Wang & Tongnan Li & Zhuoqiong Li & Chunsheng Fang, 2022. "Study on the Spatial and Temporal Distribution Characteristics and Influencing Factors of Particulate Matter Pollution in Coal Production Cities in China," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
    15. Yi, Honghong & Yang, Zhongyu & Tang, Xiaolong & Zhao, Shunzheng & Gao, Fengyu & Wang, Jiangen & Huang, Yonghai & Yang, Kun & Shi, Yiran & Xie, Xizhou, 2018. "Variations of apparent activation energy based on thermodynamics analysis of zeolitic imidazolate frameworks including pyrolysis and combustion," Energy, Elsevier, vol. 151(C), pages 782-798.
    16. Chang, Yuan & Huang, Runze & Masanet, Eric, 2014. "The energy, water, and air pollution implications of tapping China's shale gas reserves," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 100-108.
    17. Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
    18. Chow, Sheung Chi & Wenjing, Xu & Xiaoyang, Wu, 2014. "Efficiency of electricity use and productivity change of electricity in China: A nonparametric approach," MPRA Paper 62972, University Library of Munich, Germany.
    19. Xi, Xian & Tao, Yifan & Jiang, Shuguang & Yin, Chenchen, 2023. "Study on the formation mechanism and mechanical properties of composite foam slurry material for mine plugging," Energy, Elsevier, vol. 281(C).
    20. Zhang, Xun & Zou, Jiahui & Lu, Bing & Huang, Ge & Yu, Chen & Liang, Huimin, 2023. "Experimental study on effect of mudstone on spontaneous combustion of coal," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.