IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i2p1003-1009.html
   My bibliography  Save this article

Experimental study on nitric oxide reduction through calcium propionate reburning

Author

Listed:
  • Niu, Shengli
  • Han, Kuihua
  • Zhao, Jianli
  • Lu, Chunmei

Abstract

Performances of calcium propionate (CP) on nitric oxide (NO) reduction are experimentally investigated on a drop tube furnace system from basic reburning (BR), Thermal De-NOx and advanced reburning (AR) and it is demonstrated to be feasible of using CP as reburning fuel. BR could supply about 80% efficiency with reburning fuel fraction (Rff) and residence time (τ) kept 20–25% and 0.7 s, respectively. Also, oxygen concentration is required to be less than 4%. However, initial NO concentration is not important to reduction. Characteristics of Thermal De-NOx are also studied. The maximum efficiency of 85.34% could be achieved at 1273 K with mole ratio of ammonia to nitric oxide (β) equaling to 1.75. The corresponding “temperature window” is 1215–1341 K. From 2% to 6% of oxygen concentration, the efficiency of Thermal De-NOx is constantly depressed by 16.17%. The performances of advanced reburning are greatly optimized and higher efficiency could be achieved using less calcium propionate and ammonia. At 1273 K, efficiency of 93.37% is supplied by AR with Rff = 19.83% and β = 0.8. Also, the corresponding “temperature window” is broadened to 1195–1355 K which is 1.27 times of the one in Thermal De-NOx at β = 1.75. Meanwhile, the impact of oxygen concentration on NO reduction is weakened in AR.

Suggested Citation

  • Niu, Shengli & Han, Kuihua & Zhao, Jianli & Lu, Chunmei, 2011. "Experimental study on nitric oxide reduction through calcium propionate reburning," Energy, Elsevier, vol. 36(2), pages 1003-1009.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1003-1009
    DOI: 10.1016/j.energy.2010.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210006985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Shengli & Han, Kuihua & Lu, Chunmei & Sun, Rongyue, 2010. "Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate," Applied Energy, Elsevier, vol. 87(7), pages 2237-2242, July.
    2. Franco, Alessandro & Diaz, Ana R., 2009. "The future challenges for “clean coal technologies”: Joining efficiency increase and pollutant emission control," Energy, Elsevier, vol. 34(3), pages 348-354.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    2. Wu, Guixuan & Seebold, Sören & Yazhenskikh, Elena & Tanner, Joanne & Hack, Klaus & Müller, Michael, 2019. "Slag mobility in entrained flow gasifiers optimized using a new reliable viscosity model of iron oxide-containing multicomponent melts," Applied Energy, Elsevier, vol. 236(C), pages 837-849.
    3. Kiso, F. & Matsuo, M., 2011. "A simulation study on the enhancement of the shift reaction by water injection into a gasifier," Energy, Elsevier, vol. 36(7), pages 4032-4040.
    4. Zhang, Jianyun & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2013. "Efficiency of wet feed IGCC (integrated gasification combined cycle) systems with coal–water slurry preheating vaporization technology," Energy, Elsevier, vol. 51(C), pages 137-145.
    5. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    6. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    7. Luis M. Abadie & José M. Chamorro, 2009. "The Economics of Gasification: A Market-Based Approach," Energies, MDPI, vol. 2(3), pages 1-33, August.
    8. Hofmann, Mathias & Tsatsaronis, George, 2018. "Comparative exergoeconomic assessment of coal-fired power plants – Binary Rankine cycle versus conventional steam cycle," Energy, Elsevier, vol. 142(C), pages 168-179.
    9. Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zeng, Lingyan & Zhu, Qunyi, 2013. "Effect of angle of arch-supplied overfire air on flow, combustion characteristics and NOx emissions of a down-fired utility boiler," Energy, Elsevier, vol. 59(C), pages 377-386.
    10. Schaffel-Mancini, Natalia & Mancini, Marco & Szlek, Andrzej & Weber, Roman, 2010. "Novel conceptual design of a supercritical pulverized coal boiler utilizing high temperature air combustion (HTAC) technology," Energy, Elsevier, vol. 35(7), pages 2752-2760.
    11. Yan, Linbo & He, Boshu & Pei, Xiaohui & Li, Xusheng & Wang, Chaojun, 2013. "Energy and exergy analyses of a Zero emission coal system," Energy, Elsevier, vol. 55(C), pages 1094-1103.
    12. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    13. Sueyoshi, Toshiyuki & Goto, Mika, 2016. "Undesirable congestion under natural disposability and desirable congestion under managerial disposability in U.S. electric power industry measured by DEA environmental assessment," Energy Economics, Elsevier, vol. 55(C), pages 173-188.
    14. Nematollahi, Maryam & Sadeghi, Sadegh & Rasam, Hamed & Bidabadi, Mehdi, 2020. "Analytical modelling of counter-flow non-premixed combustion of coal particles under non-adiabatic conditions taking into account trajectory of particles," Energy, Elsevier, vol. 192(C).
    15. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Japanese fuel mix strategy after disaster of Fukushima Daiichi nuclear power plant: Lessons from international comparison among industrial nations measured by DEA environmental assessment in time hori," Energy Economics, Elsevier, vol. 52(PA), pages 87-103.
    16. Marinković, Dalibor M. & Stanković, Miroslav V. & Veličković, Ana V. & Avramović, Jelena M. & Miladinović, Marija R. & Stamenković, Olivera O. & Veljković, Vlada B. & Jovanović, Dušan M., 2016. "Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1387-1408.
    17. Liu, Guangkui & Chen, Zhichao & Li, Zhengqi & Zong, Qiudong & Zhang, Hao, 2014. "Effect of the arch-supplied over-fire air ratio on gas/solid flow characteristics of a down-fired boiler," Energy, Elsevier, vol. 70(C), pages 95-109.
    18. Zhang, Zhongxiao & Zhou, Rongcan & Ge, Xueli & Zhang, Jian & Wu, Xiaojiang, 2020. "Perspectives for 700 °C ultra-supercritical power generation: Thermal safety of high-temperature heating surfaces," Energy, Elsevier, vol. 190(C).
    19. Karagiannis, Ioannis C. & Soldatos, Peter G., 2010. "Estimation of critical CO2 values when planning the power source in water desalination: The case of the small Aegean islands," Energy Policy, Elsevier, vol. 38(8), pages 3891-3897, August.
    20. Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1003-1009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.