IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas030626192402138x.html
   My bibliography  Save this article

Study on the redistribution mechanism and secondary purge strategy of proton exchange membrane fuel cells

Author

Listed:
  • Ma, Tiancai
  • Du, Chang
  • Li, Ruitao
  • Tang, Xingwang
  • Su, Jianbin
  • Qian, Liqin
  • Shi, Lei

Abstract

Effective control of membrane water content is essential for increasing the space for ice formation during the cold start stage and enhancing the success rate of start-up. Shutdown purge can effectively lower the membrane water content following fuel cell operation. However, during the cooling and standing process after purge, the rapid change in saturated vapor pressure can result in the redistribution of membrane dissolved water, leading to an increase in its content and a reduction in the success rate of cold start. Therefore, this study establishes a multidimensional, multiphase simulation model to comprehensively and thoroughly analyze the redistribution mechanism after purging and investigates the relationship between membrane water content and cold start. This is achieved by identifying the maximum membrane water content boundary during the cold start process and ultimately improving the success rate of cold start through a secondary purge strategy. The research results indicate that the membrane water content of the fuel cell increases from 2.31 to 8.31 after redistribution. During the cold start stage, the cold start success of the fuel cell under different environmental temperatures exhibits relatively specific boundary conditions, with the cold start process being closely related to the load current density and initial membrane water content. After implementing the secondary purging strategy, the membrane water content of the fuel cell decreases again, displaying favorable cold start characteristics in the cold start stage and successfully starting at −10 °C. This study can provide a reliable basis for the development of purging strategies during shutdown and offer a theoretical foundation for the boundary identification process of cold start.

Suggested Citation

  • Ma, Tiancai & Du, Chang & Li, Ruitao & Tang, Xingwang & Su, Jianbin & Qian, Liqin & Shi, Lei, 2025. "Study on the redistribution mechanism and secondary purge strategy of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s030626192402138x
    DOI: 10.1016/j.apenergy.2024.124755
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192402138X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s030626192402138x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.