IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipas0360544222025737.html
   My bibliography  Save this article

Influence of cathode channel blockages on the cold start performance of proton exchange membrane fuel cell: A numerical study

Author

Listed:
  • Dafalla, Ahmed Mohmed
  • Wei, Lin
  • Liao, Zihao
  • Guo, Jian
  • Jiang, Fangming

Abstract

Proton exchange membrane fuel cell (PEMFC) performance is mainly limited by the oxygen transport to the cathode catalyst layer. Using gas flow channel blockages can effectively enhance oxygen transport. Previous research efforts demonstrated the beneficial effect of blockages on the performance of PEMFC. However, to date, the impact of flow channel blockages on the cold start performance of PEMFC has not been studied. In this work, a three-dimensional, transient, non-isothermal cold start model is developed to investigate the influence of adding staggered blocks in the cathode gas channels of a parallel flow field. The model is validated by previous experimental data. It is revealed by simulations that the addition of blockages helps to mitigate the oxygen transport limitation over the cold start duration, thus a better cold start performance is achieved. The simulated results show that the cathode full-blockage placement enhances the cold start performance much better than the partial blockage one. The local current density distribution in the full-blockage configuration case has greatly advanced, especially under the land region, due to the induced strong forced convection. More importantly, the existence of full blockages drives more oxygen into the CL for the reaction; therefore, more water correspondingly is generated, resulting in more amount of ice formation in the cathode CL, which is not favorable to the cold start process. However, despite the relatively higher ice fraction of the full-blockage case, the enhanced oxygen transport plays more dominant role at the late stages of the cold process by improving the uniformity of ice distribution in the flow direction and significantly boosting the local current density under the land region. The present article provides helpful insight in the possible utilization of the cathode channel blockage approach for assisting the design optimization of cold start process of PEMFCs.

Suggested Citation

  • Dafalla, Ahmed Mohmed & Wei, Lin & Liao, Zihao & Guo, Jian & Jiang, Fangming, 2023. "Influence of cathode channel blockages on the cold start performance of proton exchange membrane fuel cell: A numerical study," Energy, Elsevier, vol. 263(PA).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025737
    DOI: 10.1016/j.energy.2022.125687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222025737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
    2. Cai, Yonghua & Wu, Di & Sun, Jingming & Chen, Ben, 2021. "The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC," Energy, Elsevier, vol. 222(C).
    3. Ko, Johan & Ju, Hyunchul, 2012. "Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 94(C), pages 364-374.
    4. Perng, Shiang-Wuu & Wu, Horng-Wen & Chen, Yi-Bin & Zeng, Yi-Kai, 2019. "Performance enhancement of a high temperature proton exchange membrane fuel cell by bottomed-baffles in bipolar-plate channels," Applied Energy, Elsevier, vol. 255(C).
    5. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    6. Chen, Hao & Guo, Hang & Ye, Fang & MA, Chong Fang, 2022. "Cell performance and flow losses of proton exchange membrane fuel cells with orientated-type flow channels," Renewable Energy, Elsevier, vol. 181(C), pages 1338-1352.
    7. Yin, Yan & Wu, Shiyu & Qin, Yanzhou & Otoo, Obed Nenyi & Zhang, Junfeng, 2020. "Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binyamin, Binyamin & Lim, Ocktaeck, 2024. "A comparative study of streamlined flow channels with water drop block configurations and their effects on temperature profiles, mass transport characteristics, and performance in PEM fuel cell," Energy, Elsevier, vol. 301(C).
    2. Zang, Linfeng & Hao, Liang & Zhu, Xiaojing, 2023. "Effect of the pore structure of cathode catalyst layer on the PEM fuel cell cold start process," Energy, Elsevier, vol. 271(C).
    3. Tao, Xingxiao & Sun, Kai & Chen, Rui & Li, Qifeng & Liu, Huaiyu & Zhang, Wenzhe & Che, Zhizhao & Wang, Tianyou, 2024. "Effect of gas diffusion layer parameters on cold start of PEMFCs with metal foam flow field," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonghua Cai & Jingming Sun & Fan Wei & Ben Chen, 2022. "Effect of Baffle Dimensionless Size Factor on the Performance of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(10), pages 1-19, May.
    2. Maximilian Schmitz & Matthias Bahr & Sönke Gößling & Stefan Pischinger, 2023. "Analysis of Ice Formation during Start-Up of PEM Fuel Cells at Subzero Temperatures Using Experimental and Simulative Methods," Energies, MDPI, vol. 16(18), pages 1-26, September.
    3. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    4. Ghasabehi, Mehrdad & Ghanbari, Sina & Asadi, Mohammad Reza & Shams, Mehrzad & Kanani, Homayoon, 2024. "Optimization of baffle and tapering integration in the PEM fuel cell flow field employing artificial intelligence," Energy, Elsevier, vol. 302(C).
    5. Zang, Linfeng & Hao, Liang & Zhu, Xiaojing, 2023. "Effect of the pore structure of cathode catalyst layer on the PEM fuel cell cold start process," Energy, Elsevier, vol. 271(C).
    6. Zhou, Yu & Wu, Mingyang & Meng, Kai & Liu, Yurong & Rao, Peng & Wu, Xiao & Huang, Shuyi & Li, Ke & Zheng, Chongwei & Wu, Daoxiong & Deng, Peilin & Li, Jing & Tian, Xinlong & Kang, Zhenye, 2024. "Microscale structure optimization of catalyst layer for comprehensive performance enhancement in proton exchange membrane fuel cell," Energy, Elsevier, vol. 301(C).
    7. Chen, Hao & Guo, Hang & Ye, Fang & MA, Chong Fang, 2022. "Cell performance and flow losses of proton exchange membrane fuel cells with orientated-type flow channels," Renewable Energy, Elsevier, vol. 181(C), pages 1338-1352.
    8. Knorr, Florian & Sanchez, Daniel Garcia & Schirmer, Johannes & Gazdzicki, Pawel & Friedrich, K.A., 2019. "Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 1-10.
    9. Zhou, Yu & Chen, Ben & Meng, Kai & Zhou, Haoran & Chen, Wenshang & Zhang, Ning & Deng, Qihao & Yang, Guanghua & Tu, Zhengkai, 2023. "Optimal design of a cathode flow field for performance enhancement of PEM fuel cell," Applied Energy, Elsevier, vol. 343(C).
    10. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Yulin Wang & Xiangling Liao & Guokun Liu & Haokai Xu & Chao Guan & Huixuan Wang & Hua Li & Wei He & Yanzhou Qin, 2023. "Review of Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 16(10), pages 1-54, May.
    12. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    13. Prantik Roy Chowdhury & Adam C. Gladen, 2024. "Design of Flow Fields for High-Temperature PEM Fuel Cells Using Computational Fluid Dynamics," Energies, MDPI, vol. 17(19), pages 1-27, September.
    14. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    15. Wang, Jiatang & Zhang, Houcheng & Cai, Weiwei & Ye, Weiqiang & Tong, Yiheng & Cheng, Hansong, 2023. "Effect of varying rib area portions on the performance of PEM fuel cells: Insights into design and optimization," Renewable Energy, Elsevier, vol. 217(C).
    16. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    17. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    18. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    19. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    20. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.