IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923015957.html
   My bibliography  Save this article

Optimal sizing and techno-economic analysis of the hybrid PV-battery-cooling storage system for commercial buildings in China

Author

Listed:
  • Chen, Qi
  • Kuang, Zhonghong
  • Liu, Xiaohua
  • Zhang, Tao

Abstract

Energy systems for flexibility in buildings are hybrid, primarily including rooftop photovoltaics (PV), cooling storage, and battery. Considering their techno-economic patterns, this research establishes an optimization model to determine the optimal technology portfolio and financial advantages of PV-battery-cooling storage systems for commercial buildings in China. The analysis of all cases indicates that cooling storage outperforms batteries in economic benefits, suggesting the prioritization of cooling storage installation. Once the optimal cooling storage rate is exceeded, it is advisable to proceed with batteries. Meanwhile, PV integration significantly enhances the system efficiency and promotes battery utilization. For example, a 40% PV penetration combined with a 0.006 $/(a·kWhe) energy storage investment results in an impressive 27.3% cost reduction in a Beijing mall, while the optimal cooling storage rate decreases from 55% to 40%. Furthermore, the study emphasizes the impact of tariff patterns and electricity demand on the economic feasibility of hybrid energy systems. The museum's substantial annual cooling requirements and nighttime loads make cooling storage favorable, with PV less suitable than the mall and office. Notably, cities like Beijing, Shanghai, Chongqing, and Guangzhou exhibit considerable peak-to-valley tariff differences, yielding higher economic benefits ranging from 23% to 27%. Finally, as battery costs decline and electricity price becomes more volatile, the battery would gradually replace cooling storage, especially when battery cost drops from 150 $/kWh to 70 $/kWh.

Suggested Citation

  • Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2024. "Optimal sizing and techno-economic analysis of the hybrid PV-battery-cooling storage system for commercial buildings in China," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015957
    DOI: 10.1016/j.apenergy.2023.122231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    2. Bardwell, Louise & Blackhall, Lachlan & Shaw, Marnie, 2023. "Emissions and prices are anticorrelated in Australia’s electricity grid, undermining the potential of energy storage to support decarbonisation," Energy Policy, Elsevier, vol. 173(C).
    3. Dehghan, Hassan & Pourfayaz, Fathollah & Shahsavari, Ardavan, 2022. "Multicriteria decision and Geographic Information System-based locational analysis and techno-economic assessment of a hybrid energy system," Renewable Energy, Elsevier, vol. 198(C), pages 189-199.
    4. Gao, Mingfei & Han, Zhonghe & Zhang, Ce & Li, Peng & Wu, Di & Li, Peng, 2023. "Optimal configuration for regional integrated energy systems with multi-element hybrid energy storage," Energy, Elsevier, vol. 277(C).
    5. Zakeri, Behnam & Gissey, Giorgio Castagneto & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Centralized vs. distributed energy storage – Benefits for residential users," Energy, Elsevier, vol. 236(C).
    6. Meinrenken, Christoph J. & Mehmani, Ali, 2019. "Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs," Applied Energy, Elsevier, vol. 254(C).
    7. He, Gang & Kammen, Daniel M., 2016. "Where, when and how much solar is available? A provincial-scale solar resource assessment for China," Renewable Energy, Elsevier, vol. 85(C), pages 74-82.
    8. Wolf-Peter Schill & Michael Pahle & Christian Gambardella, 2017. "Start-up costs of thermal power plants in markets with increasing shares of variable renewable generation," Nature Energy, Nature, vol. 2(6), pages 1-6, June.
    9. Li, Wenzhuo & Wang, Shengwei & Koo, Choongwan, 2021. "A real-time optimal control strategy for multi-zone VAV air-conditioning systems adopting a multi-agent based distributed optimization method," Applied Energy, Elsevier, vol. 287(C).
    10. Niveditha, N. & Rajan Singaravel, M.M., 2022. "Optimal sizing of hybrid PV–Wind–Battery storage system for Net Zero Energy Buildings to reduce grid burden," Applied Energy, Elsevier, vol. 324(C).
    11. Zhao, Xu & Wang, Jiawei & Lei, Shan, 2023. "Does regional natural gas supply produce a shortfall under transition from coal to gas? Case study in Jing-Jin-Ji Region," Energy Policy, Elsevier, vol. 174(C).
    12. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Kuang, Zhonghong & Chen, Qi & Yu, Yang, 2022. "Assessing the CO2-emission risk due to wind-energy uncertainty," Applied Energy, Elsevier, vol. 310(C).
    14. Curto, Domenico & Favuzza, Salvatore & Franzitta, Vincenzo & Guercio, Andrea & Amparo Navarro Navia, Milagros & Telaretti, Enrico & Zizzo, Gaetano, 2022. "Grid Stability Improvement Using Synthetic Inertia by Battery Energy Storage Systems in Small Islands," Energy, Elsevier, vol. 254(PC).
    15. Rick Cox & Shalika Walker & Joep van der Velden & Phuong Nguyen & Wim Zeiler, 2020. "Flattening the Electricity Demand Profile of Office Buildings for Future-Proof Smart Grids," Energies, MDPI, vol. 13(9), pages 1-27, May.
    16. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
    17. Chen, Xi & Liu, Zhongbing & Wang, Pengcheng & Li, Benjia & Liu, Ruimiao & Zhang, Ling & Zhao, Chengliang & Luo, Songqin, 2023. "Multi-objective optimization of battery capacity of grid-connected PV-BESS system in hybrid building energy sharing community considering time-of-use tariff," Applied Energy, Elsevier, vol. 350(C).
    18. Tang, Hong & Wang, Shengwei, 2022. "Multi-level optimal dispatch strategy and profit-sharing mechanism for unlocking energy flexibilities of non-residential building clusters in electricity markets of multiple flexibility services," Renewable Energy, Elsevier, vol. 201(P1), pages 35-45.
    19. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2022. "Energy storage to solve the diurnal, weekly, and seasonal mismatch and achieve zero-carbon electricity consumption in buildings," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Neugebauer & Jakub d’Obyrn & Piotr Sołowiej, 2024. "Economic Analysis of Profitability of Using Energy Storage with Photovoltaic Installation in Conditions of Northeast Poland," Energies, MDPI, vol. 17(13), pages 1-13, June.
    2. George Stamatellos & Antiopi-Malvina Stamatellou, 2024. "The Interaction between Short- and Long-Term Energy Storage in an nZEB Office Building," Energies, MDPI, vol. 17(6), pages 1-27, March.
    3. Fang, Juan & Yang, Miaomiao & Sui, Junpeng & Luo, Tengqi & Yu, Yinsheng & Ao, Yunjin & Dou, Ruifeng & Zhou, Wenning & Li, Wei & Liu, Xunliang & Zhao, Kai, 2024. "Enhancing solar-powered hydrogen production efficiency by spectral beam splitting and integrated chemical energy storage," Applied Energy, Elsevier, vol. 372(C).
    4. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2024. "Application-oriented assessment of grid-connected PV-battery system with deep reinforcement learning in buildings considering electricity price dynamics," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2024. "Application-oriented assessment of grid-connected PV-battery system with deep reinforcement learning in buildings considering electricity price dynamics," Applied Energy, Elsevier, vol. 364(C).
    2. Tang, Hong & Wang, Shengwei, 2023. "Life-cycle economic analysis of thermal energy storage, new and second-life batteries in buildings for providing multiple flexibility services in electricity markets," Energy, Elsevier, vol. 264(C).
    3. Tang, Hong & Wang, Shengwei, 2023. "Game-theoretic optimization of demand-side flexibility engagement considering the perspectives of different stakeholders and multiple flexibility services," Applied Energy, Elsevier, vol. 332(C).
    4. Jiehui Yuan & Wenli Yuan & Juan Yuan & Zhihong Liu & Jia Liao & Xunmin Ou, 2023. "Policy Recommendations for Distributed Solar PV Aiming for a Carbon-Neutral Future," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    5. Zhang, Qiang & Zhang, Shu & Chen, Wenying, 2024. "Provincial pathways to carbon-neutral energy systems in China considering interprovincial electricity transmission development," Applied Energy, Elsevier, vol. 375(C).
    6. Liao, Wei & Xiao, Fu & Li, Yanxue & Peng, Jinqing, 2024. "Comparative study on electricity transactions between multi-microgrid: A hybrid game theory-based peer-to-peer trading in heterogeneous building communities considering electric vehicles," Applied Energy, Elsevier, vol. 367(C).
    7. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
    8. Chen, Siqi & Zhang, Kuan & Liu, Nian & Xie, Yawen, 2024. "Unlock the aggregated flexibility of electricity-hydrogen integrated virtual power plant for peak-regulation," Applied Energy, Elsevier, vol. 360(C).
    9. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    10. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    11. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    12. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    13. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    15. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    16. Wu, Chunying & Sun, Lingfang & Piao, Heng & Yao, Lijia, 2024. "Adaptive fuzzy finite time integral sliding mode control of the coordinated system for 350 MW supercritical once-through boiler unit to enhance flexibility," Energy, Elsevier, vol. 302(C).
    17. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    18. Goldsworthy, M. & Moore, T. & Peristy, M. & Grimeland, M., 2022. "Cloud-based model-predictive-control of a battery storage system at a commercial site," Applied Energy, Elsevier, vol. 327(C).
    19. Zengkai Zhang & Jiaoyan Li & Dabo Guan, 2023. "Value chain carbon footprints of Chinese listed companies," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.