IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924013278.html
   My bibliography  Save this article

Robust decomposition and tracking strategy for demand response enhanced virtual power plants

Author

Listed:
  • Pang, Simian
  • Xu, Qingshan
  • Yang, Yongbiao
  • Cheng, Aoxue
  • Shi, Zhengkun
  • Shi, Yun

Abstract

Current scheduling strategies for flexible loads typically depend on simplified demand response (DR) models that do not take into consideration the nonlinear coupling of uncertain characteristics, leading to substantial DR deviations and hindering precise load scheduling. This paper introduces a robust decomposition and tracking strategy to address multi-dimensional DR deviations. The primary objective is to support economic and precise demand response in day-ahead scheduling within virtual power plant (VPP) management. Firstly, a multi-dimensional deviation model is proposed to capture the coupling and uncertainties across four dimensions, including time, speed, power, and energy dimensions. Then, utilizing a two-stage robust optimization approach, this strategy incorporates the deviation model to refine the decomposition and tracking processes. In the decomposition stage, the strategy optimizes scheduling commands for flexible loads and energy storage, aiming to enhance the overall benefits of the VPP. In the tracking stage, energy storage effectively compensates for DR deviations, thereby minimizing the VPP's net deviations. Finally, the effectiveness and robustness of this strategy are verified by utilizing historical data from Northern China. The optimization result demonstrates notable advantages, including a 12.0% cost reduction for the VPP and compensation of 75.81 MWh in DR deviations compared to traditional approaches. Additionally, a case study comparing various VPP configurations highlights the heating load VPP as the most economically viable option, priced at ¥94,200.

Suggested Citation

  • Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924013278
    DOI: 10.1016/j.apenergy.2024.123944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924013278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    2. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    3. Pang, Simian & Zheng, Zixuan & Xiao, Xianyong & Huang, Chunjun & Zhang, Shu & Li, Jie & Zong, Yi & You, Shi, 2022. "Collaborative power tracking method of diversified thermal loads for optimal demand response: A MILP-Based decomposition algorithm," Applied Energy, Elsevier, vol. 327(C).
    4. Li, Qiang & Wei, Fanchao & Zhou, Yongcheng & Li, Jiajia & Zhou, Guowen & Wang, Zhonghao & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2023. "A scheduling framework for VPP considering multiple uncertainties and flexible resources," Energy, Elsevier, vol. 282(C).
    5. Tang, Yi & Li, Feng & Chen, Qian & Li, Mengya & Wang, Qi & Ni, Ming & Chen, Gang, 2018. "Frequency prediction method considering demand response aggregate characteristics and control effects," Applied Energy, Elsevier, vol. 229(C), pages 936-944.
    6. Kwag, Hyung-Geun & Kim, Jin-O, 2014. "Reliability modeling of demand response considering uncertainty of customer behavior," Applied Energy, Elsevier, vol. 122(C), pages 24-33.
    7. Song, Yuguang & Xia, Mingchao & Chen, Qifang, 2023. "The robust synchronization control scheme for flexible resources considering the stochastic and delay response process," Applied Energy, Elsevier, vol. 343(C).
    8. Han, Rushuai & Hu, Qinran & Cui, Hantao & Chen, Tao & Quan, Xiangjun & Wu, Zaijun, 2022. "An optimal bidding and scheduling method for load service entities considering demand response uncertainty," Applied Energy, Elsevier, vol. 328(C).
    9. Liu, Xin & Li, Yang & Lin, Xueshan & Guo, Jiqun & Shi, Yunpeng & Shen, Yunwei, 2022. "Dynamic bidding strategy for a demand response aggregator in the frequency regulation market," Applied Energy, Elsevier, vol. 314(C).
    10. Duan, Jiandong & Liu, Fan & Yang, Yao, 2022. "Optimal operation for integrated electricity and natural gas systems considering demand response uncertainties," Applied Energy, Elsevier, vol. 323(C).
    11. Kirkerud, J.G. & Nagel, N.O. & Bolkesjø, T.F., 2021. "The role of demand response in the future renewable northern European energy system," Energy, Elsevier, vol. 235(C).
    12. Vuelvas, José & Ruiz, Fredy & Gruosso, Giambattista, 2018. "Limiting gaming opportunities on incentive-based demand response programs," Applied Energy, Elsevier, vol. 225(C), pages 668-681.
    13. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    14. Norouzi, Mohammadali & Aghaei, Jamshid & Pirouzi, Sasan & Niknam, Taher & Fotuhi-Firuzabad, Mahmud, 2022. "Flexibility pricing of integrated unit of electric spring and EVs parking in microgrids," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    2. Sasaki, Kento & Aki, Hirohisa & Ikegami, Takashi, 2022. "Application of model predictive control to grid flexibility provision by distributed energy resources in residential dwellings under uncertainty," Energy, Elsevier, vol. 239(PB).
    3. Scharnhorst, L. & Sloot, D. & Lehmann, N. & Ardone, A. & Fichtner, W., 2024. "Barriers to demand response in the commercial and industrial sectors – An empirical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    4. Cheng, Lin & Wan, Yuxiang & Tian, Liting & Zhang, Fang, 2019. "Evaluating energy supply service reliability for commercial air conditioning loads from the distribution network aspect," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    6. Abedrabboh, Khaled & Al-Fagih, Luluwah, 2023. "Applications of mechanism design in market-based demand-side management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    9. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    10. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    11. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    12. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    13. Christina Carty & Oscar Claveria, 2022. "“The nexus between variable renewable energy, economy and climate: Evidence from European countries by means of exploratory graphical analysis”," AQR Working Papers 202205, University of Barcelona, Regional Quantitative Analysis Group, revised May 2022.
    14. Firouzmakan, Pouya & Hooshmand, Rahmat-Allah & Bornapour, Mosayeb & Khodabakhshian, Amin, 2019. "A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 355-368.
    15. Luo, Shihua & Hu, Weihao & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2022. "Flexibility enhancement measures under the COVID-19 pandemic – A preliminary comparative analysis in Denmark, the Netherlands, and Sichuan of China," Energy, Elsevier, vol. 239(PC).
    16. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    17. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    18. Dunguo Mou, 2018. "Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province," Sustainability, MDPI, vol. 10(2), pages 1-20, January.
    19. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    20. Brunner, Christoph & Deac, Gerda & Braun, Sebastian & Zöphel, Christoph, 2020. "The future need for flexibility and the impact of fluctuating renewable power generation," Renewable Energy, Elsevier, vol. 149(C), pages 1314-1324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924013278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.