IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1441-d1358542.html
   My bibliography  Save this article

The Interaction between Short- and Long-Term Energy Storage in an nZEB Office Building

Author

Listed:
  • George Stamatellos

    (Department of Mechanical Engineering, University of Thessaly, 38221 Volos, Greece)

  • Antiopi-Malvina Stamatellou

    (Department of Mechanical Engineering, University of Thessaly, 38221 Volos, Greece)

Abstract

The establishment of near-autonomous micro-grids in commercial or public building complexes is gaining increasing popularity. Short-term storage capacity is provided by means of large battery installations, or, more often, by the employees’ increasing use of electric vehicle batteries, which are allowed to operate in bi-directional charging mode. In addition to the above short-term storage means, a long-term storage medium is considered essential to the optimal operation of the building’s micro-grid. The most promising long-term energy storage carrier is hydrogen, which is produced by standard electrolyzer units by exploiting the surplus electricity produced by photovoltaic installation, due to the seasonal or weekly variation in a building’s electricity consumption. To this end, a novel concept is studied in this paper. The details of the proposed concept are described in the context of a nearly Zero Energy Building (nZEB) and the associated micro-grid. The hydrogen produced is stored in a high-pressure tank to be used occasionally as fuel in an advanced technology hydrogen spark ignition engine, which moves a synchronous generator. A size optimization study is carried out to determine the genset’s rating, the electrolyzer units’ capacity and the tilt angle of the rooftop’s photovoltaic panels, which minimize the building’s interaction with the external grid. The hydrogen-fueled genset engine is optimally sized to 40 kW (0.18 kW/kWp PV). The optimal tilt angle of the rooftop PV panels is 39°. The maximum capacity of the electrolyzer units is optimized to 72 kW (0.33 kWmax/kWp PV). The resulting system is tacitly assumed to integrate to an external hydrogen network to make up for the expected mismatches between hydrogen production and consumption. The significance of technology in addressing the current challenges in the field of energy storage and micro-grid optimization is discussed, with an emphasis on its potential benefits. Moreover, areas for further research are highlighted, aiming to further advance sustainable energy solutions.

Suggested Citation

  • George Stamatellos & Antiopi-Malvina Stamatellou, 2024. "The Interaction between Short- and Long-Term Energy Storage in an nZEB Office Building," Energies, MDPI, vol. 17(6), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1441-:d:1358542
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    2. Kai Song & Yu Lan & Xian Zhang & Jinhai Jiang & Chuanyu Sun & Guang Yang & Fengshuo Yang & Hao Lan, 2023. "A Review on Interoperability of Wireless Charging Systems for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-22, February.
    3. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2024. "Optimal sizing and techno-economic analysis of the hybrid PV-battery-cooling storage system for commercial buildings in China," Applied Energy, Elsevier, vol. 355(C).
    4. Qusay Hassan & Itimad D. J. Azzawi & Aws Zuhair Sameen & Hayder M. Salman, 2023. "Hydrogen Fuel Cell Vehicles: Opportunities and Challenges," Sustainability, MDPI, vol. 15(15), pages 1-26, July.
    5. George Stamatellos & Tassos Stamatelos, 2023. "Study of an nZEB Office Building with Storage in Electric Vehicle Batteries and Dispatch of a Natural Gas-Fuelled Generator," Energies, MDPI, vol. 16(7), pages 1-20, April.
    6. Go, Jaehyun & Byun, Jiwook & Orehounig, Kristina & Heo, Yeonsook, 2023. "Battery-H2 storage system for self-sufficiency in residential buildings under different electric heating system scenarios," Applied Energy, Elsevier, vol. 337(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Mo & Xiaosheng Wang & Yibo Wang & Ben Zhang & Chaoqiang Jiang, 2024. "Mutual Inductance Estimation of SS-IPT System through Time-Domain Modeling and Nonlinear Least Squares," Energies, MDPI, vol. 17(13), pages 1-14, July.
    2. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    3. Xiaohan Fang & Jinkuan Wang & Guanru Song & Yinghua Han & Qiang Zhao & Zhiao Cao, 2019. "Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling," Energies, MDPI, vol. 13(1), pages 1-26, December.
    4. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    5. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    6. Yu Huang & Weiting Zhang & Kai Yang & Weizhen Hou & Yiran Huang, 2019. "An Optimal Scheduling Method for Multi-Energy Hub Systems Using Game Theory," Energies, MDPI, vol. 12(12), pages 1-20, June.
    7. Thomas, Dimitrios & D’Hoop, Gaspard & Deblecker, Olivier & Genikomsakis, Konstantinos N. & Ioakimidis, Christos S., 2020. "An integrated tool for optimal energy scheduling and power quality improvement of a microgrid under multiple demand response schemes," Applied Energy, Elsevier, vol. 260(C).
    8. Syed Muhammad Ahsan & Hassan Abbas Khan & Sarmad Sohaib & Anas M. Hashmi, 2023. "Optimized Power Dispatch for Smart Building and Electric Vehicles with V2V, V2B and V2G Operations," Energies, MDPI, vol. 16(13), pages 1-15, June.
    9. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    10. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    11. Zhang, Tairan & Sobhani, Behrouz, 2023. "Optimal economic programming of an energy hub in the power system while taking into account the uncertainty of renewable resources, risk-taking and electric vehicles using a developed routing method," Energy, Elsevier, vol. 271(C).
    12. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    13. Cao, Sunliang, 2019. "The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    15. Ghayour, Sepideh Saravani & Barforoushi, Taghi, 2022. "Optimal scheduling of electrical and thermal resources and appliances in a smart home under uncertainty," Energy, Elsevier, vol. 261(PA).
    16. Fahad R. Albogamy & Ghulam Hafeez & Imran Khan & Sheraz Khan & Hend I. Alkhammash & Faheem Ali & Gul Rukh, 2021. "Efficient Energy Optimization Day-Ahead Energy Forecasting in Smart Grid Considering Demand Response and Microgrids," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    17. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    18. Jefimowski, Włodzimierz & Szeląg, Adam & Steczek, Marcin & Nikitenko, Anatolii, 2020. "Vanadium redox flow battery parameters optimization in a transportation microgrid: A case study," Energy, Elsevier, vol. 195(C).
    19. Matteo Fresia & Stefano Bracco, 2023. "Electric Vehicle Fleet Management for a Prosumer Building with Renewable Generation," Energies, MDPI, vol. 16(20), pages 1-16, October.
    20. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Yin, He, 2019. "Optimal generation scheduling for a deep-water semi-submersible drilling platform with uncertain renewable power generation and loads," Energy, Elsevier, vol. 181(C), pages 897-907.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1441-:d:1358542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.