IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001302.html
   My bibliography  Save this article

Unlock the aggregated flexibility of electricity-hydrogen integrated virtual power plant for peak-regulation

Author

Listed:
  • Chen, Siqi
  • Zhang, Kuan
  • Liu, Nian
  • Xie, Yawen

Abstract

This paper proposes an aggregated flexibility estimation method considering the distributed electricity-hydrogen (H2) interactions for virtual power plants (VPPs) to enhance the economic benefits from the peak-regulation market (PRM) while facilitating the accommodation of renewable generation. Firstly, various distributed energy resources (DERs) such as electric vehicles (EVs), air conditioning systems (ACs), and electricity-H2 coupled hydrogen refueling stations (HRSs) are modeled as virtual storage (VS) with characterized charging/discharging response parameters. Besides, the temporal coupling power profile of VS can be abstracted as a polytope from the geometric perspective, and the aggregated high-dimensional flexibility region of VPP is formulated by the Minkowski sum for these polytopes. Furthermore, a day-ahead peak-regulation optimal scheduling model considering the conditional value at risk (CVaR) is developed for the electricity-H2 integrated VPP participating the PRM, and the dimensionality of the aggregated polytope is reduced by the inscribed hyperbox approximation to provide a compact and concise scheduling region. Comparative studies have validated the aggregated power range and net income can be improved by 13.05% and 15.11% with the mechanism of electricity and hydrogen integrations.

Suggested Citation

  • Chen, Siqi & Zhang, Kuan & Liu, Nian & Xie, Yawen, 2024. "Unlock the aggregated flexibility of electricity-hydrogen integrated virtual power plant for peak-regulation," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001302
    DOI: 10.1016/j.apenergy.2024.122747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    2. Zhou, Huan & Fan, Shuai & Wu, Qing & Dong, Lianxin & Li, Zuyi & He, Guangyu, 2021. "Stimulus-response control strategy based on autonomous decentralized system theory for exploitation of flexibility by virtual power plant," Applied Energy, Elsevier, vol. 285(C).
    3. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Libin Yang & Zhengxi Li & Tingxiang Liu & Na An & Wanpeng Zhou & Yang Si, 2024. "Two-Stage Robust Resilience Enhancement of Distribution System against Line Failures via Hydrogen Tube Trailers," Energies, MDPI, vol. 17(20), pages 1-14, October.
    2. Liu, Xin & Li, Yang & Wang, Li & Tang, Junbo & Qiu, Haifeng & Berizzi, Alberto & Valentin, Ilea & Gao, Ciwei, 2024. "Dynamic aggregation strategy for a virtual power plant to improve flexible regulation ability," Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Hong & Wang, Shengwei, 2022. "Multi-level optimal dispatch strategy and profit-sharing mechanism for unlocking energy flexibilities of non-residential building clusters in electricity markets of multiple flexibility services," Renewable Energy, Elsevier, vol. 201(P1), pages 35-45.
    2. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2024. "Optimal sizing and techno-economic analysis of the hybrid PV-battery-cooling storage system for commercial buildings in China," Applied Energy, Elsevier, vol. 355(C).
    3. Ghaemi, Sina & Li, Xinyu & Mulder, Machiel, 2023. "Economic feasibility of green hydrogen in providing flexibility to medium-voltage distribution grids in the presence of local-heat systems," Applied Energy, Elsevier, vol. 331(C).
    4. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    5. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    7. Zengkai Zhang & Jiaoyan Li & Dabo Guan, 2023. "Value chain carbon footprints of Chinese listed companies," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    9. Richard P. van Leeuwen & Annelies E. Boerman & Edmund W. Schaefer & Gerwin Hoogsteen & Yashar S. Hajimolana, 2022. "Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs," Energies, MDPI, vol. 15(6), pages 1-22, March.
    10. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    11. Zhao, Ke-Xin & Xu, Fei-Ran & Zhou, Yan & Ma, Tao, 2024. "The heterogeneous effects of non-hydro renewable energy and water resources on industrial development of the Yellow river and Yangtze river basins," Energy, Elsevier, vol. 301(C).
    12. Li, Zepeng & Wu, Qiuwei & Li, Hui & Nie, Chengkai & Tan, Jin, 2024. "Distributed low-carbon economic dispatch of integrated power and transportation system," Applied Energy, Elsevier, vol. 353(PA).
    13. Lidia Gawlik & Eugeniusz Mokrzycki, 2021. "Analysis of the Polish Hydrogen Strategy in the Context of the EU’s Strategic Documents on Hydrogen," Energies, MDPI, vol. 14(19), pages 1-15, October.
    14. Li, Xueqin & Zheng, Zhuoji & Luo, Beier & Shi, Daqian & Han, Xianfeng, 2024. "The impact of electricity sales side reform on energy technology innovation: An analysis based on SCP paradigm," Energy Economics, Elsevier, vol. 136(C).
    15. Syed Muhammad Ahsan & Hassan Abbas Khan & Sarmad Sohaib & Anas M. Hashmi, 2023. "Optimized Power Dispatch for Smart Building and Electric Vehicles with V2V, V2B and V2G Operations," Energies, MDPI, vol. 16(13), pages 1-15, June.
    16. Tommy Lundgren & Mattias Vesterberg, 2024. "Efficiency in electricity distribution in Sweden and the effects of small-scale generation, electric vehicles and dynamic tariffs," Journal of Productivity Analysis, Springer, vol. 62(2), pages 121-137, October.
    17. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    18. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    19. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    20. Meloni, Eugenio & Martino, Marco & Palma, Vincenzo, 2022. "Microwave assisted steam reforming in a high efficiency catalytic reactor," Renewable Energy, Elsevier, vol. 197(C), pages 893-901.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.