IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v2y2017i6d10.1038_nenergy.2017.50.html
   My bibliography  Save this article

Start-up costs of thermal power plants in markets with increasing shares of variable renewable generation

Author

Listed:
  • Wolf-Peter Schill

    (German Institute for Economic Research (DIW Berlin))

  • Michael Pahle

    (Potsdam Institute for Climate Impact Research (PIK))

  • Christian Gambardella

    (Potsdam Institute for Climate Impact Research (PIK))

Abstract

The emerging literature on power markets with high shares of variable renewable energy sources suggests that the costs of more frequent start-ups of thermal power plants may become an increasing concern. Here we investigate how this develops in Germany, where the share of variable renewables is expected to grow from 14% in 2013 to 34% in 2030. We show that the overall number of start-ups grows by 81%, while respective costs increase by 119% in this period. Related to variable renewables’ production, start-up costs increase by a mere €0.70 per additional megawatt hour. While the expansion of variable renewables alone would increase start-up costs, more flexible biomass power plants and additional power storage have counteracting effects. Yet changes in reserve provision and fuel prices increase start-up costs again. The relevance of start-up costs may grow further under continued renewable expansion, but could be mitigated by increasing system flexibility.

Suggested Citation

  • Wolf-Peter Schill & Michael Pahle & Christian Gambardella, 2017. "Start-up costs of thermal power plants in markets with increasing shares of variable renewable generation," Nature Energy, Nature, vol. 2(6), pages 1-6, June.
  • Handle: RePEc:nat:natene:v:2:y:2017:i:6:d:10.1038_nenergy.2017.50
    DOI: 10.1038/nenergy.2017.50
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nenergy201750
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nenergy.2017.50?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:2:y:2017:i:6:d:10.1038_nenergy.2017.50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.