IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v339y2023ics0306261923003690.html
   My bibliography  Save this article

Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches

Author

Listed:
  • Song, Zhe
  • Cao, Sunliang
  • Yang, Hongxing

Abstract

In light of the rapidly expanding solar photovoltaic (PV) sector, it is important to provide a deeper understanding of solar energy resources to successfully implement solar energy projects. In this study, an interpretable machine learning model based on extreme gradient boosting (XGBoost) optimized by particle swarm optimization (PSO) algorithms was developed to estimate global solar radiation. The results show that the proposed PSO-XGBoost model possesses the most superior accuracy and stability, with the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of 0.953, 1.597 MJ·m−2·day−1, 1.138 MJ·m−2·day−1, and 10.500%, respectively. With the geographic information system (GIS) -based approaches, a 50 km by 50 km spatial resolution map of long-term national average solar radiation resources was generated based on the reconstructed solar radiation dataset, as well as the PV power potential map. The findings reveal that the nationwide annual mean solar radiation resources were decreasing at an estimated attenuation of −0.83 W·m−2·decade−1, with a downward trend of the greatest magnitude of −1.83 W·m−2·decade−1 for summer. China’s long-term average yearly PV power potential reached 285.00 kWh·m−2, indicating a spatial pattern of higher potentials in the northwestern and northern provinces, while lower values in the southeastern provinces. Moreover, the PV power potential in China decreased by 1.69 kWh·m−2·decade−1 from 1961 to 2016, with an attenuation of above 5 kWh·m−2·decade−1 in heavily polluted regions. During the 2010s, 30 out of the 31 provinces experienced a reduction in the PV power potential between 0.25% and 10.27%, with an average national reduction of 2.88%, compared to the 1960s scenario. Also, policy recommendations for long-term PV project deployment were given regarding the regional mismatch between PV power potential and installed capacity in China.

Suggested Citation

  • Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
  • Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003690
    DOI: 10.1016/j.apenergy.2023.121005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923003690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deo, Ravinesh C. & Şahin, Mehmet & Adamowski, Jan F. & Mi, Jianchun, 2019. "Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 235-261.
    2. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    3. Jinyue Yan & Ying Yang & Pietro Elia Campana & Jijiang He, 2019. "City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China," Nature Energy, Nature, vol. 4(8), pages 709-717, August.
    4. Deo, Ravinesh C. & Şahin, Mehmet, 2017. "Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 828-848.
    5. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Chen, Jiang & Zhu, Weining & Yu, Qian, 2021. "Estimating half-hourly solar radiation over the Continental United States using GOES-16 data with iterative random forest," Renewable Energy, Elsevier, vol. 178(C), pages 916-929.
    7. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    9. Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
    10. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage," Applied Energy, Elsevier, vol. 298(C).
    11. Liu, Jia & Ma, Tao & Wu, Huijun & Yang, Hongxing, 2023. "Study on optimum energy fuel mix for urban cities integrated with pumped hydro storage and green vehicles," Applied Energy, Elsevier, vol. 331(C).
    12. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).
    13. Hassan, Muhammed A. & Akoush, Bassem M. & Abubakr, Mohamed & Campana, Pietro Elia & Khalil, Adel, 2021. "High-resolution estimates of diffuse fraction based on dynamic definitions of sky conditions," Renewable Energy, Elsevier, vol. 169(C), pages 641-659.
    14. Chen, Fuying & Yang, Qing & Zheng, Niting & Wang, Yuxuan & Huang, Junling & Xing, Lu & Li, Jianlan & Feng, Shuanglei & Chen, Guoqian & Kleissl, Jan, 2022. "Assessment of concentrated solar power generation potential in China based on Geographic Information System (GIS)," Applied Energy, Elsevier, vol. 315(C).
    15. Yang, Dazhi, 2018. "A correct validation of the National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 152-155.
    16. Eşlik, Ardan Hüseyin & Akarslan, Emre & Hocaoğlu, Fatih Onur, 2022. "Short-term solar radiation forecasting with a novel image processing-based deep learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 1490-1505.
    17. Carneiro, Tatiane C. & Rocha, Paulo A.C. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M., 2022. "Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain," Applied Energy, Elsevier, vol. 314(C).
    18. He, Gang & Kammen, Daniel M., 2016. "Where, when and how much solar is available? A provincial-scale solar resource assessment for China," Renewable Energy, Elsevier, vol. 85(C), pages 74-82.
    19. Liu, Jia & Zhou, Yuekuan & Yang, Hongxing & Wu, Huijun, 2022. "Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis," Applied Energy, Elsevier, vol. 321(C).
    20. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    21. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    22. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    23. Mitrentsis, Georgios & Lens, Hendrik, 2022. "An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting," Applied Energy, Elsevier, vol. 309(C).
    24. Zhao, Shuting & Wu, Lifeng & Xiang, Youzhen & Dong, Jianhua & Li, Zhen & Liu, Xiaoqiang & Tang, Zijun & Wang, Han & Wang, Xin & An, Jiaqi & Zhang, Fucang & Li, Zhijun, 2022. "Coupling meteorological stations data and satellite data for prediction of global solar radiation with machine learning models," Renewable Energy, Elsevier, vol. 198(C), pages 1049-1064.
    25. Bellido-Jiménez, Juan Antonio & Estévez Gualda, Javier & García-Marín, Amanda Penélope, 2021. "Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions," Applied Energy, Elsevier, vol. 298(C).
    26. Niveditha, N. & Rajan Singaravel, M.M., 2022. "Optimal sizing of hybrid PV–Wind–Battery storage system for Net Zero Energy Buildings to reduce grid burden," Applied Energy, Elsevier, vol. 324(C).
    27. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    28. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    29. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    30. Wang, Yu & He, Jijiang & Chen, Wenying, 2021. "Distributed solar photovoltaic development potential and a roadmap at the city level in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Hua & Han, Qi & de Vries, Bauke & Sun, Jun, 2024. "Community solar PV adoption in residential apartment buildings: A case study on influencing factors and incentive measures in Wuhan," Applied Energy, Elsevier, vol. 354(PA).
    2. Lv, Furong & Tang, Haiping, 2024. "Sustainable photovoltaic power generation spatial planning through ecosystem service valuation: A case study of the Qinghai-Tibet plateau," Renewable Energy, Elsevier, vol. 222(C).
    3. Yanyan Huang & Yi Yang & Hangyi Ren & Lanxin Ye & Qinhan Liu, 2024. "From Urban Design to Energy Sustainability: How Urban Morphology Influences Photovoltaic System Performance," Sustainability, MDPI, vol. 16(16), pages 1-27, August.
    4. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "Quantifying the air pollution impacts on solar photovoltaic capacity factors and potential benefits of pollution control for the solar sector in China," Applied Energy, Elsevier, vol. 365(C).
    5. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "An interpretable framework for modeling global solar radiation using tree-based ensemble machine learning and Shapley additive explanations methods," Applied Energy, Elsevier, vol. 364(C).
    6. Jiang, Meng & Ding, Kun & Chen, Xiang & Cui, Liu & Zhang, Jingwei & Cang, Yi & Yang, Hang & Gao, Ruiguang, 2024. "CGH-GTO method for model parameter identification based on improved grey wolf optimizer, honey badger algorithm, and gorilla troops optimizer," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "An interpretable framework for modeling global solar radiation using tree-based ensemble machine learning and Shapley additive explanations methods," Applied Energy, Elsevier, vol. 364(C).
    2. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    3. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    5. Guijo-Rubio, D. & Durán-Rosal, A.M. & Gutiérrez, P.A. & Gómez-Orellana, A.M. & Casanova-Mateo, C. & Sanz-Justo, J. & Salcedo-Sanz, S. & Hervás-Martínez, C., 2020. "Evolutionary artificial neural networks for accurate solar radiation prediction," Energy, Elsevier, vol. 210(C).
    6. Liu, Jia & Zhou, Yuekuan & Yang, Hongxing & Wu, Huijun, 2022. "Uncertainty energy planning of net-zero energy communities with peer-to-peer energy trading and green vehicle storage considering climate changes by 2050 with machine learning methods," Applied Energy, Elsevier, vol. 321(C).
    7. Liu, Jia & Zhou, Yuekuan & Yang, Hongxing & Wu, Huijun, 2022. "Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis," Applied Energy, Elsevier, vol. 321(C).
    8. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    9. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    11. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    12. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    13. Wang, Tiantian & Wang, Yanhua & Wang, Ke & Fu, Sha & Ding, Li, 2024. "Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation," Applied Energy, Elsevier, vol. 356(C).
    14. Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
    15. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
    16. Joseph, Lionel P. & Deo, Ravinesh C. & Casillas-Pérez, David & Prasad, Ramendra & Raj, Nawin & Salcedo-Sanz, Sancho, 2024. "Short-term wind speed forecasting using an optimized three-phase convolutional neural network fused with bidirectional long short-term memory network model," Applied Energy, Elsevier, vol. 359(C).
    17. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
    18. Jiang, Chengcheng & Zhu, Qunzhi, 2023. "Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer," Applied Energy, Elsevier, vol. 348(C).
    19. Jiehui Yuan & Wenli Yuan & Juan Yuan & Zhihong Liu & Jia Liao & Xunmin Ou, 2023. "Policy Recommendations for Distributed Solar PV Aiming for a Carbon-Neutral Future," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    20. Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.