IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v300y2021ics0306261921007662.html
   My bibliography  Save this article

Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests

Author

Listed:
  • Shan, Kui
  • Wang, Shengwei
  • Zhuang, Chaoqun

Abstract

High penetration of intermittent renewables may cause safety and stability problems to the electricity grid. Building thermal loads could contribute to the grid stability in the era of renewable energy and smart grid, because they are high and flexible. This study proposes a model predictive control strategy to control a large constant speed centrifugal chiller to follow grid frequency regulation signals while providing sufficient cooling to the building. Onsite tests were conducted to identify critical parameters in the process including time delay and ramping speed of chiller power consumption. A dynamic platform was built based on the studied system and fine-tuned using onsite tests data. Validation tests were conducted using the 40 min Regulation A and Regulation D test signals provided by PJM (Pennsylvania - New Jersey - Maryland Interconnection). According to the onsite tests, the total delay time and the maximum ramping speed of chiller power were 20–25 s and 2.53 kW/s, respectively. Validation based on the 40 min test signals shown that the composite performance scores were 0.901 and 0.885 for Regulation A test and Regulation D test, respectively. Continuous 12 h validation tests in a working day shown that the composite scores were 0.917 and 0.893 for Reg A and Reg D tests, respectively. And the studied constant speed centrifugal chiller could provide a regulation capacity of 5–7.5% of its nominal power.

Suggested Citation

  • Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007662
    DOI: 10.1016/j.apenergy.2021.117359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921007662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Wei & Abdolrashidi, Amirali & Yu, Nanpeng & Wong, Daniel, 2019. "Frequency regulation service provision in data center with computational flexibility," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Pandey, Shashi Kant & Mohanty, Soumya R. & Kishor, Nand, 2013. "A literature survey on load–frequency control for conventional and distribution generation power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 318-334.
    3. Wang, Huilong & Wang, Shengwei & Tang, Rui, 2019. "Development of grid-responsive buildings: Opportunities, challenges, capabilities and applications of HVAC systems in non-residential buildings in providing ancillary services by fast demand responses," Applied Energy, Elsevier, vol. 250(C), pages 697-712.
    4. Shan, Kui & Fan, Cheng & Wang, Jiayuan, 2019. "Model predictive control for thermal energy storage assisted large central cooling systems," Energy, Elsevier, vol. 179(C), pages 916-927.
    5. Razmara, M. & Bharati, G.R. & Hanover, Drew & Shahbakhti, M. & Paudyal, S. & Robinett, R.D., 2017. "Building-to-grid predictive power flow control for demand response and demand flexibility programs," Applied Energy, Elsevier, vol. 203(C), pages 128-141.
    6. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Qi, Ye & Dong, Wenjuan & Dong, Changgui & Huang, Caiwei, 2019. "Understanding institutional barriers for wind curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 476-486.
    8. Fabietti, Luca & Qureshi, Faran A. & Gorecki, Tomasz T. & Salzmann, Christophe & Jones, Colin N., 2018. "Multi-time scale coordination of complementary resources for the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1164-1180.
    9. Fu, Yangyang & Han, Xu & Baker, Kyri & Zuo, Wangda, 2020. "Assessments of data centers for provision of frequency regulation," Applied Energy, Elsevier, vol. 277(C).
    10. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Anthony Howard & Bo Nørregaard Jørgensen & Zheng Ma, 2023. "Multi-Method Simulation and Multi-Objective Optimization for Energy-Flexibility-Potential Assessment of Food-Production Process Cooling," Energies, MDPI, vol. 16(3), pages 1-27, February.
    2. Chen, Yuzhu & Xu, Jinzhao & Wang, Jun & Lund, Peter D., 2022. "Optimization of a weather-based energy system for high cooling and low heating conditions using different types of water-cooled chiller," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Kez, Dlzar & Foley, Aoife M. & Ahmed, Faraedoon W. & O'Malley, Mark & Muyeen, S.M., 2021. "Potential of data centers for fast frequency response services in synchronously isolated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Bay, Christopher J. & Chintala, Rohit & Chinde, Venkatesh & King, Jennifer, 2022. "Distributed model predictive control for coordinated, grid-interactive buildings," Applied Energy, Elsevier, vol. 312(C).
    3. Wang, Huilong & Wang, Shengwei, 2021. "A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids," Energy, Elsevier, vol. 230(C).
    4. Samy Faddel & Guanyu Tian & Qun Zhou, 2021. "Decentralized Management of Commercial HVAC Systems," Energies, MDPI, vol. 14(11), pages 1-18, May.
    5. Cao, Yujie & Zhang, Sufang, 2023. "Facilitating the provision of load flexibility to the power system by data centers: A hybrid research method applied to China," Utilities Policy, Elsevier, vol. 84(C).
    6. Chen, Boyu & Che, Yanbo & Zheng, Zhihao & Zhao, Shuaijun, 2023. "Multi-objective robust optimal bidding strategy for a data center operator based on bi-level optimization," Energy, Elsevier, vol. 269(C).
    7. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    8. Wang, Huilong & Ding, Zhikun & Tang, Rui & Chen, Yongbao & Fan, Cheng & Wang, Jiayuan, 2022. "A machine learning-based control strategy for improved performance of HVAC systems in providing large capacity of frequency regulation service," Applied Energy, Elsevier, vol. 326(C).
    9. Wang, Huilong & Wang, Shengwei & Shan, Kui, 2020. "Experimental study on the dynamics, quality and impacts of using variable-speed pumps in buildings for frequency regulation of smart power grids," Energy, Elsevier, vol. 199(C).
    10. Guo, Caishan & Luo, Fengji & Cai, Zexiang & Dong, Zhao Yang, 2021. "Integrated energy systems of data centers and smart grids: State-of-the-art and future opportunities," Applied Energy, Elsevier, vol. 301(C).
    11. Shang-Guan, Xingchen & He, Yong & Zhang, Chuanke & Jiang, Lin & Spencer, Joseph William & Wu, Min, 2020. "Sampled-data based discrete and fast load frequency control for power systems with wind power," Applied Energy, Elsevier, vol. 259(C).
    12. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    13. Fu, Yangyang & Han, Xu & Baker, Kyri & Zuo, Wangda, 2020. "Assessments of data centers for provision of frequency regulation," Applied Energy, Elsevier, vol. 277(C).
    14. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    15. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Emad A. Mohamed & Mokhtar Aly & Masayuki Watanabe, 2022. "New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids," Mathematics, MDPI, vol. 10(16), pages 1-33, August.
    17. Chen, Hao & Cui, Jian & Song, Feng & Jiang, Zhigao, 2022. "Evaluating the impacts of reforming and integrating China's electricity sector," Energy Economics, Elsevier, vol. 108(C).
    18. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    20. Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.