IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p3006-d893188.html
   My bibliography  Save this article

New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids

Author

Listed:
  • Emad A. Mohamed

    (Department of Electrical Engineering, Aswan University, Aswan 81542, Egypt
    Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Fukuoka, Japan
    These authors contributed equally to this work.)

  • Mokhtar Aly

    (Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420000, Chile
    These authors contributed equally to this work.)

  • Masayuki Watanabe

    (Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Fukuoka, Japan
    These authors contributed equally to this work.)

Abstract

Recent advancements in renewable generation resources and their vast implementation in power sectors have posed serious challenges regarding their operation, protection, and control. Maintaining operating frequency at its nominal value and reducing tie-line power deviations represent crucial factors for these advancements due to continuous reduction of power system inertia. In this paper, a new modified load frequency controller (LFC) method is proposed based on fractional calculus combinations. The tilt fractional-order integral-derivative with fractional-filter (TFOIDFF) is proposed in this paper for LFC applications. The proposed TFOIDFF controller combines the benefits of tilt, FOPID, and fractional filter regulators. Furthermore, a new application is introduced based on the recently presented artificial hummingbird optimizer algorithm (AHA) for simultaneous optimization of the proposed TFOIDFF parameters in the studied two-area power grids. The contribution of electric vehicle (EVs) is considered in the centralized control strategy using the proposed TFOIDFF controller. The performance of the proposed TFOIDFF controller has been compared with the existing tilt with filter, PID with filter, FOPID with filter and hybrid fractional-order with filter LFCs from the literature. Moreover, the AHA optimizer results are compared with the featured LFC optimization algorithms in the literature. The proposed TFOIDFF and AHA optimizer are validated against renewable energy fluctuations, load stepping, generation/loading uncertainty, and power-grid parameter uncertainty. The AHA optimizer is compared with the widely-used optimizers in the literature, including the PSO, ABC, BOA, and AEO optimizers at the IAE, ISE, ITAE, and ITSE objectives. For instance, the proposed AHA method has a minimized IAE after 34 iterations of 0.03178 compared to 0.03896 with PSO, 0.04548 with AEO, 0.04812 with BOA, and 0.05483 with ABC optimizer. Therefore, fast and better minimization of objective functions are achieved using the proposed AHA method.

Suggested Citation

  • Emad A. Mohamed & Mokhtar Aly & Masayuki Watanabe, 2022. "New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids," Mathematics, MDPI, vol. 10(16), pages 1-33, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3006-:d:893188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/3006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/3006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed. H. A. Elkasem & Salah Kamel & Mohamed H. Hassan & Mohamed Khamies & Emad M. Ahmed, 2022. "An Eagle Strategy Arithmetic Optimization Algorithm for Frequency Stability Enhancement Considering High Renewable Power Penetration and Time-Varying Load," Mathematics, MDPI, vol. 10(6), pages 1-38, March.
    2. Pandey, Shashi Kant & Mohanty, Soumya R. & Kishor, Nand, 2013. "A literature survey on load–frequency control for conventional and distribution generation power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 318-334.
    3. Abdul Latif & S. M. Suhail Hussain & Dulal Chandra Das & Taha Selim Ustun, 2020. "Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI − (1 + ID) Controller for Frequency Response of a Microgrid," Energies, MDPI, vol. 13(13), pages 1-12, July.
    4. Roxana Motorga & Vlad Mureșan & Mihaela-Ligia Ungureșan & Mihail Abrudean & Honoriu Vălean & Iulia Clitan, 2022. "Artificial Intelligence in Fractional-Order Systems Approximation with High Performances: Application in Modelling of an Isotopic Separation Process," Mathematics, MDPI, vol. 10(9), pages 1-32, April.
    5. Sun, Peng & Yun, Teng & Chen, Zhe, 2021. "Multi-objective robust optimization of multi-energy microgrid with waste treatment," Renewable Energy, Elsevier, vol. 178(C), pages 1198-1210.
    6. Inés Tejado & Blas M. Vinagre & José Emilio Traver & Javier Prieto-Arranz & Cristina Nuevo-Gallardo, 2019. "Back to Basics: Meaning of the Parameters of Fractional Order PID Controllers," Mathematics, MDPI, vol. 7(6), pages 1-16, June.
    7. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    8. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Mihailo Micev & Martin Ćalasan & Diego Oliva, 2020. "Fractional Order PID Controller Design for an AVR System Using Chaotic Yellow Saddle Goatfish Algorithm," Mathematics, MDPI, vol. 8(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamdi Gassara & Dhouha Kharrat & Abdellatif Ben Makhlouf & Lassaad Mchiri & Mohamed Rhaima, 2023. "SOS Approach for Practical Stabilization of Tempered Fractional-Order Power System," Mathematics, MDPI, vol. 11(13), pages 1-10, July.
    2. Emad M. Ahmed & Ali Selim & Hammad Alnuman & Waleed Alhosaini & Mokhtar Aly & Emad A. Mohamed, 2022. "Modified Frequency Regulator Based on TI λ -TD μ FF Controller for Interconnected Microgrids with Incorporating Hybrid Renewable Energy Sources," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    3. Adlan Pradana & Mejbaul Haque & Mithulanathan Nadarajah, 2023. "Control Strategies of Electric Vehicles Participating in Ancillary Services: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-36, February.
    4. Balvender Singh & Adam Slowik & Shree Krishan Bishnoi, 2023. "Review on Soft Computing-Based Controllers for Frequency Regulation of Diverse Traditional, Hybrid, and Future Power Systems," Energies, MDPI, vol. 16(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mokhtar Aly & Emad A. Mohamed & Abdullah M. Noman & Emad M. Ahmed & Fayez F. M. El-Sousy & Masayuki Watanabe, 2023. "Optimized Non-Integer Load Frequency Control Scheme for Interconnected Microgrids in Remote Areas with High Renewable Energy and Electric Vehicle Penetrations," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    2. Emad M. Ahmed & Ali Selim & Hammad Alnuman & Waleed Alhosaini & Mokhtar Aly & Emad A. Mohamed, 2022. "Modified Frequency Regulator Based on TI λ -TD μ FF Controller for Interconnected Microgrids with Incorporating Hybrid Renewable Energy Sources," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    3. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    4. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    5. Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.
    6. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    7. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Ki Ryong Kim & Sangjung Lee & Jong-Pil Lee & Jaesik Kang, 2021. "An Enhanced Control Strategy for Mitigation of State-Transition Oscillation Phenomena in Grid-Forming Self-Synchronized Converter System with Islanded Power System," Energies, MDPI, vol. 14(24), pages 1-20, December.
    9. Hou, Jiazuo & Hu, Chenxi & Lei, Shunbo & Hou, Yunhe, 2024. "Cyber resilience of power electronics-enabled power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    11. Shreya Shree Das & Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    12. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    13. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    14. Rajan, Rijo & Fernandez, Francis M. & Yang, Yongheng, 2021. "Primary frequency control techniques for large-scale PV-integrated power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Taha Selim Ustun, 2022. "Power Systems Imitate Nature for Improved Performance Use of Nature-Inspired Optimization Techniques," Energies, MDPI, vol. 15(17), pages 1-2, August.
    16. Anh-Tuan Tran & Bui Le Ngoc Minh & Van Van Huynh & Phong Thanh Tran & Emmanuel Nduka Amaefule & Van-Duc Phan & Tam Minh Nguyen, 2021. "Load Frequency Regulator in Interconnected Power System Using Second-Order Sliding Mode Control Combined with State Estimator," Energies, MDPI, vol. 14(4), pages 1-17, February.
    17. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    18. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    19. Yekui Chang & Rao Liu & Yu Ba & Weidong Li, 2018. "A New Control Logic for a Wind-Area on the Balancing Authority Area Control Error Limit Standard for Load Frequency Control," Energies, MDPI, vol. 11(1), pages 1-20, January.
    20. Zhang, Tengxi & Xin, Li & Wang, Shunjiang & Guo, Ren & Wang, Wentao & Cui, Jia & Wang, Peng, 2024. "A novel approach of energy and reserve scheduling for hybrid power systems: Frequency security constraints," Applied Energy, Elsevier, vol. 361(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3006-:d:893188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.